Accessible Unlicensed Requires Authentication Published by De Gruyter February 22, 2017

Solidification microstructures of Cu–Zr–Al–Y BMG produced by casting in a wedge-shaped copper mold

Ke Yang, Xinhui Fan, Bing Li, Yanhong Li and Xin Wang


In this paper, Cu43Zr48Al9 and (Cu43Zr48Al9)98Y2 bulk metallic glasses were prepared by casting them in a wedge-shaped copper mold. X-ray diffraction, optical microscopy, scanning electron microscopy and transmission electron microscopy were used to analyze their microstructures. Wedge casting is an effective and flexible technique for exploring alloy solidification microstructures. The results demonstrate that the development of microstructural transitions is related to the thickness of the wedge-shaped samples. These microstructural transitions are represented by the appearance of altered microstructural morphologies as well as changes from one product structure to another. It is found that the crystal/glass transition occurs as a U-shape change in Cu-based wedge-shaped alloys. Further, the critical cooling rate of (Cu43Zr48Al9)98Y2 became lower than that of Cu43Zr48Al9 and that (Cu43Zr48Al9)98Y2 has a better glass forming ability. We developed practical strategies in microstructure control to extend our knowledge of phase competition leading to the successful synthesis of Cu-based metallic glass.

*Correspondence address, Prof. Xinhui Fan, School of Material and Chemical Engineering, Xi'an Technological University, Xuefu Middle Road No. 2, Xi'an 710021, China, Tel.: +86-29-86173323, Fax: +86-29-86173323, E-mail:


[1] A.Inoue, K.Ohtera, K.Kita, T.Masumoto: Jpn. J. Appl. Phys.27 (1988) L2248. 27.L2248. 10.1143/JJAPSearch in Google Scholar

[2] A.Inoue, T.Zhang, T.Masumoto: Mater. Trans. JIM31 (1990) 425. 10.2320/matertrans1989.31.425Search in Google Scholar

[3] V.Ponnambalam, S.J.Poon, G.J.Shiflet: J. Mater. Res.19 (2004) 1320. 10.1557/JMR.2004.0176Search in Google Scholar

[4] S.L.Zhu, X.M.Wang, A.Inoue: Intermetallics16 (2008) 1031. 10.1016/j.intermet.2008.05.006Search in Google Scholar

[5] A.Inoue, T.Zhang: Mater. Trans. JIM37 (1996) 185. 10.2320/matertrans1989.37.185Search in Google Scholar

[6] Q.S.Zhang, W.Zhang, A.Inoue: Mater. Trans. JIM48 (2007) 629. 10.2320/matertrans.48.629Search in Google Scholar

[7] R.Li, S.Pang, C.Ma, T.Zhang: Acta Mater.55 (2007) 3719. 10.1016/j.actamat.2007.02.026Search in Google Scholar

[8] Q.Zheng, J.Xu, E.Ma: J. Appl. Phys.102 (2007) 113519. 10.1063/1.2821755Search in Google Scholar

[9] A.Inoue: Acta Mater.48 (2000) 279. 10.1016/S1359-6454(99)00300-6Search in Google Scholar

[10] W.H.Wang, C.Dong, C.H.Shek: Mater. Sci. Eng. R44 (2004) 45. 10.1016/j.mser.2004.03.001Search in Google Scholar

[11] D.Turnbull: Contemporary Physics10 (1969) 473. 10.1080/00107516908204405Search in Google Scholar

[12] Z.P.Lu, C.T.Liu: Acta Mater.50 (2002) 3501. 10.1016/S1359-6454(02)00166-0Search in Google Scholar

[13] Y.Li, S.C.Ng, C.K.Ong, H.H.Hng, T.T.Goh: Scr. Mater.36 (1997) 783. 10.1016/S1359-6462(96)00448-4Search in Google Scholar

[14] A.Inoue: Mater. Sci. Eng. A226–228 (1997) 357. 1016/S0921-5093(97)80049-4Search in Google Scholar

[15] A.Inoue: Acta Mater.48 (2000) 279. 10.1016/S1359-6454(99)00300-6Search in Google Scholar

[16] X.Cui, F.Q.Zu, Z.Z.Wang, Z.Y.Huang, X.Y.Li, L.F.Wang: Intermetallics36 (2013) 21. 10.1016/j.intermet.2012.12.008Search in Google Scholar

[17] Y.Wu, H.Wang, H.H.Wu, Z.Y.Zhang, X.D.Hui, G.L.Chen, D.Ma, X.L.Wang, Z.P.Lu: Acta Mater.59 (2011) 2928. 10.1016/j.actamat.2011.01.029Search in Google Scholar

[18] Y.Wu, Y.H.Xiao, G.L.Chen, C.T.Liu, Z.P.Lu: Adv. Mater.22 (2010) 2770. 10.1002/adma.201000482Search in Google Scholar

[19] J.M.Liu, H.F.Zhang, H.M.Fu, Z.Q.Hu, X.G.Yuan: J. Mater. Res.25 (2011) 1159. 10.1557/JMR.2010.0138Search in Google Scholar

Received: 2016-09-25
Accepted: 2016-11-29
Published Online: 2017-02-22
Published in Print: 2017-03-13

© 2017, Carl Hanser Verlag, München