Accessible Unlicensed Requires Authentication Published by De Gruyter February 22, 2017

The sintering behavior and physical properties of Li2CO3-doped Bi0.5(Na0.8K0.2)0.5TiO3 lead-free ceramics

Le Dai Vuong and Nguyen Truong Tho

Abstract

In this study, Li2CO3-doped Bi0.5(Na0.8K0.2)0.5TiO3 (BNKT) ceramics were fabricated via the conventional solid-state reaction using ultrasound waves for preliminary milling. The milling time was shortened from 20 h to 1 h with ball milling. The phase structure of BNKT investigated by X-ray diffraction showed a single perovskite phase. With increasing Li2CO3 content, the phase structure of the ceramics changed from rhombohedral to tetragonal. At a sintering temperature of 1100 °C and Li2CO3 content of 0.4 wt.%, the best physical properties of the ceramics, such as density (ρ), 5.9 g cm−3; electromechanical coupling factors (kp), 0.32; (kt), 0.29; remanent polarization (Pr), 12.0 μC cm−2; dielectric constant (r), 1 191; and highest dielectric constant (max), 5 800, were obtained.


*Correspondence address, Le Dai Vuong, Faculty of Chemical and Environmental Engineering, Hue Industrial College, 70 Nguyen Hue Str., Hue City, Vietnam, Tel.: +84888000858, E-mail:

References

[1] Y.Xu: Ferroelectric Materials and Their Applications. North-Holland, Amsterdam-London-New York-Tokyo (1991) ISBN: 9780444883544. Search in Google Scholar

[2] C.Ederer, N.A.Spaldin: Phys. Rev. B.71 (2005) 224103. 10.1103/PhysRevB.71.224103 Search in Google Scholar

[3] S.J.Kim: J. Korean Phys. Soc.56 (2010) 439442. 10.3938/jkps.56.439 Search in Google Scholar

[4] S.O.Leontsev, R.E.Eitel: J. Am. Ceram. Soc.92 (2009) 2957. 10.1111/j.1551–2916.2009.03313.x Search in Google Scholar

[5] Y.Saito, H.Takao, T.Nonoyama, K.Takatori, T.Homma, T.Nagaya, M.Nakamuna: Nature432 (2004) 8487. 10.1038/nature03028 Search in Google Scholar

[6] G.A.Smolenskii, V.A.Isupov, A.I.Agranovskaya, N.N.Krainik: Sov. Phys. Solid State (Engl. Transl.)2 (1961) 2651. 10.1063/1.1732613 Search in Google Scholar

[7] M.Zhu, L.Hou, Y.Hou, J.Liu, H.Wang, H.Yan: Mater. Chem. Phys.99 (2006) 329332. 10.1016/j.matchemphys.2005.10.031 Search in Google Scholar

[8] M.Izumi, K.Yamamoto, M.Suzuki, Y.Noguchi, M.Miyayama: Appl. Phys. Lett.93 (2008) ID 242903. 10.1063/1.3046791 Search in Google Scholar

[9] R.Zuo, H.Wang, B.Ma, L.Li: J. Mater. Sci.-Mater. Electron.20 (2009) 11401143. 10.1007/s10854-008-9840-9 Search in Google Scholar

[10] N.Truong-Tho, L.D.Vuong: Wulfenia J.22 (2015) 250258. Search in Google Scholar

[11] Y.Liao, D.Xiao,D.Lin, J.Zhu, P.Yu, L.Wu, X.Wang: Mater. Sci. Eng. B133:1–3 (2006) 172176. 10.1016/j.mseb.2006.06.026 Search in Google Scholar

[12] E.Taghaddos, M.Hejazi, A.Safari: J. Am. Ceram. Soc.97 (2014) 17561762. 10.1111/jace.12805 Search in Google Scholar

[13] D. ThiHinh, M.R.Bafandeh, J.K.Kang, C.H.Hong, W.Joc, J.S.Lee: Ceram. Int.41 (2015) 458463. 10.1016/j.ceramint.2015.03.150 Search in Google Scholar

[14] L.D.Vuong, P.D.Gio, N.D. TungLuan, H.Cheolkeun: Wulfenia J.22 (2015) 216227. Search in Google Scholar

[15] A.Ullah, C.W.Ahn, A.Hussain, I.W.Kim: Curr. Appl. Phys.10 (2010) 13671371. 10.1016/j.cap.2010.05.004 Search in Google Scholar

[16] S.Bhandari, N.Sinha, G.Raya, B.Kumara: Scr. Mater.89 (2014) 6164. 10.1016/j.scriptamat.2014.06.029 Search in Google Scholar

[17] L.D.Vuong, P.D.Gio, Int. J. Mater. Sci. Appl.2 (2013) 8993. Search in Google Scholar

[18] B.Wang, L.Luo, F.Ni, P.Du, W.Li, H.Chen: J. Alloys Compd.526 (2013) 7984. 10.1016/j.jallcom.2012.02.114 Search in Google Scholar

[19] Y.Yuan, S.Zhang, X.Zhou: J. Mater. Sci.-Mater. Electron.20 (2009) 10901094. 10.1007/s10854-008-9832-9 Search in Google Scholar

[20] Y.Yuan, S.R.Zhang, X.H.Zhou: J. Mater. Sci. Lett.41 (2006) 565567. 10.1007/s10853-005-4238-z Search in Google Scholar

[21] S.H.Kang, C.W.Ahn, H.J.Lee, I.W.Kim, E.C.Park, J.S.Lee: J. Electroceram.21 (2008) 855858. 10.1007/s10832-008-9507-1 Search in Google Scholar

[22] J.Yoo, S.Lee: Trans. Electr. Electron. Mater.10 (2009) 121125. 10.4313/TEEM.2009.10.4.121 Search in Google Scholar

[23] Y.Zhang, R.Chu, Z.Xu, Q.Chen, Y.Liu, G.Zhang: Curr. Appl. Phys.12 (2012) 204209. 10.1016/j.cap.2011.06.002 Search in Google Scholar

[24] A.Ullah, A.Ullah, I.W.Kim, D.S.Lee, S.J.Jeong, C.W.Ahn: J. Am. Ceram. Soc.97 (2014) 24712478. 10.1111/jace.12952 Search in Google Scholar

[25] M.R.Yang, S.Y.Chu, C.C.Tsai: J. Alloys Compd.507 (2010), 433438. 10.1016/j.jallcom.2010.07.150 Search in Google Scholar

[26] S.Zhang, E.F.Alberta: IEEE Trans. Ultrason. Ferroelectr. Freq. Control52 (2005) 21312139. 10.1109/TUFFC.2005.1561684 Search in Google Scholar

[27] K.W.Kwok, H.L.W.Chan, C.L.Choy: IEEE Trans. Ultrason. Ferroelectr. Freq. Control44 (1997) 733742. 10.1109/58.655188 Search in Google Scholar

Received: 2016-07-09
Accepted: 2016-10-12
Published Online: 2017-02-22
Published in Print: 2017-03-13

© 2017, Carl Hanser Verlag, München