Accessible Requires Authentication Published by De Gruyter February 22, 2017

Evolution of mechanical properties and microstructure of differently cryogenically treated hot die steel AISI–H13

Sanjeev Katoch, Rakesh Sehgal and Vishal Singh

Abstract

This paper investigates the influence of different cryogenic treatments vis-à-vis conventional vacuum heat treatment on the evolution of static mechanical properties and microstructure of hot die steel grade AISI–H13. Deep cryogenic treatment was performed under two different temperatures (−154 °C and −184 °C) and varying soak duration of 6, 21, and 36 h. The resultant mechanical properties were characterized in order to understand the influence of cryogenic treatment vis-à-vis vacuum heat treatment and tempering on the hardness, toughness and the tensile strength. The results showed that samples cryogenically treated at −154°C for a soak duration of 6 h and tempered at 620°C for 2 h had 3.1% higher hardness, samples cryogenically treated at −184 °C for a soak duration of 6 h and tempered at 620 °C for 2 h showed 69 % higher percentage elongation, 36% higher toughness (Charpy V–notch) and showed 12.8% reduction in tensile strength in comparison to conventionally treated samples. X-ray diffraction and field emission scanning electron microscopy techniques were utilized for confirmation of various phases and complex carbides, morphology of microstructure and morphology of fractured surfaces, respectively.


*Correspondence address, Sanjeev Katoch, Center for Materials Science and Engineering, National Institute of Technology, Hamirpur-177005 (H.P.), India, Tel.: +918427262400, E-mail:

References

[1] K.Holmberg, A.Matthews: Coating tribology-properties, techniques and applications in Surface Engineering, 2nd Ed., Tribolo#132;logy and Interface Engineering Series, Elsevier, Amsterdam, (2009) 56. Search in Google Scholar

[2] M.V.Leite, C.A.Figueroa, S.C.Gallo, A.C.Rovani, R.L.O.Basso, P.R.Mei, I.J.R.Baumvol, A.Sinatora: Wear269 (2010) 466. 10.1016/j.wear.2010.04.037 Search in Google Scholar

[3] X.J.Jawing, Q.Peng, H.Fan, Y.Wang, G.Li, B.Shen: Mater. Charact.60 (2009) 197. 10.1016/j.matchar.2008.08.011 Search in Google Scholar

[4] D.M.Lal, S.Renganarayanan, A.Kalanidhi: Cryogenics41 (2001) 149. 10.1016/S0011-2275(01)00065-0 Search in Google Scholar

[5] R.F.Barron: Progress in Refrigeration Sci. and Technol., Publishing Co., Westport. 1 (1973) 529. Search in Google Scholar

[6] R.G.Bowes: Heat Treat. Met.1 (1974) 29. Search in Google Scholar

[7] D.Das, A.K.Dutta, K.K.Ray: Mater. Sci. Eng. A527 (2010) 2182./j.msea.2009.10.071. 10.1016 Search in Google Scholar

[8] M.E.Mehtedi, P.Ricci, L.Drudi, S.E.Mohtadi, M.Cabibbo, S.Spigarelli: Mater. Des.33 (2012) 136. 10.1016/j.matdes.2011.07.030 Search in Google Scholar

[9] M.Koneshlou, K.Meshinchi, F.Khomamizadeh: Cryogenics51 (2011) 55. 10.1016/j.cryogenics.2010.11.001 Search in Google Scholar

[10] S.Katoch, R.Sehgal, V.Singh: Proceeding of International Conference on Advances in Tribology and Engineering Systems, Springer-India (2014) 159166. 10.1007/978-81-322-1656-8_13 Search in Google Scholar

[11] D.Das, A.K.Dutta, K.K.Ray: Wear266 (2009) 297. 10.1016/j.wear.2008.07.001#6; Search in Google Scholar

[12] K.Amini, S.Nategh, A.Shafyei: Mater. Des.31 (2010) 4666. 10.1016/j.matdes.2010.05.028 Search in Google Scholar

[13] D.N.Collins: Adv. Mater. Process.12 (1998) 23. Search in Google Scholar

[14] D.N.Collins: Heat Treat. Met.2 (1996) 40. Search in Google Scholar

[15] F.Diekman, R.Papp: Heat Treating Progress (2009) 3336. Search in Google Scholar

[16] G.Straffenlini, G.Bizzotto, V.Zanon: Wear269 (2010) 693. 10.1016/j.wear.2010.07.004 Search in Google Scholar

[17] F.J.Silva, S.D.Franco, A.R.Machado, E.O.Ezugwu, A.M.Soozajr: Wear261 (2006) 674. 10.1016/j.wear.2006.01.017 Search in Google Scholar

[18] A.Molinari, M.Pellizzari, S.Gialanella, G.Straffelini, K.H.Stiasny: J. Mater. Process. Technol.118 (2001) 350. 10.1016/S0924-0136(01)00973-6 Search in Google Scholar

[19] S.S.Gill, J.Singh, R.Singh, H.Singh: J. Mater. Eng. Perform.21 (2012) 1320. 10.1007/s11665-011-0032-z Search in Google Scholar

[20] V.Firouzdor, E.Nejati, F.Khomamizad: J. Mater. Process. Technol.206 (2008) 467. 10.1016/j.jmatprotec.2007.12.072 Search in Google Scholar

[21] Y.Huang, Y.T.Zhu, X.Z.Liao, I.J.Beyerlein, M.A.Bourlce, T.E.Mitchell: Mater. Sci. Eng. A339 (2003) 241. 10.1016/S0921-5093(02)00165-X Search in Google Scholar

[22] M.Fanju, T.KohsukeA.Ryo, K.Hidea: ISI J Int.34 (1994) 205. 10.2355/isijinternational.34.205 Search in Google Scholar

[23] C.L.Gogte, K.M.Iyer, R.K.Paretka, D.R.Peshwe: Mater. Manuf. Processes24 (2009) 718. 10.1080/10426910902806210 Search in Google Scholar

[24] ASTM E 415-2014: ‘Standard test method for analysis of carbon and low alloy steel by spark atomic emission spectrometry’, ASTM Annual Book of Standards, West Conshohocken, PA, USA. Search in Google Scholar

[25] A.M.Bayer, T.Vasco, L.R.Walton: ‘Properties and Selection: Iron, Steels and High Performance Alloys’, ASM Handbook Vol. 1, 3rd Ed., ASM Int., Materials Park, OH, USA (1995) 770. Search in Google Scholar

[26] ASTM E08–08: ‘Standard test method for tension testing of metallic materials’, ASTM Annual Book of Standards, 3.01, West Conshohocken, PA, USA (2009). Search in Google Scholar

[27] ASTM E23-07a.: ‘Standard test method for notched bar impact testing of metallic materials’, ASTM Annual Book of Standards, 3.01, West Conshohocken, PA, USA (2009). Search in Google Scholar

[28] ASTM E3-01 (Reapproved 2007): ‘Standard Guide for preparation of metallographic specimens’, ASTM Annual Book of Standards, 3.01, West Conshohocken, PA, USA (2007). Search in Google Scholar

[29] ASTM E975-03 (Reapproved 2008): ‘Standard practice for X-Ray determination of retained austenite in steel with near random crystallographic orientation’, ASTM Annual Book of Standards, 3.01, West Conshohocken, PA, USA (2009). Search in Google Scholar

[30] ASTM E384-08a: ‘Standard test method for Micro indentation hardness of materials’, ASTM Annual Book of Standards, 3.01, West Conshohocken, PA, USA (2009). Search in Google Scholar

[31] ASTM E18-08b: ‘Standard test method for Rockwell hardness of metallic materials. ASTM Annual Book of Standards, 3.01, West Conshohocken, PA, USA (2009). Search in Google Scholar

[32] F.Farhani, K.S.Niaki, S.E.Vahdat, A.Firozi: Mater. Des.42 (2012) 279. 10.1016/j.matdes.2012.05.059 Search in Google Scholar

[33] M.A.Jaswin, D.M.Lal: Mater. Des.32 (2011) 2429. 10.1016/j.matdes.2010.11.065 Search in Google Scholar

[34] S.Li, Y.Xie, X.Wu: Cryogenics50 (2010) 89. 10.1016/j.cryogenics.2009.12.005 Search in Google Scholar

[35] D.Das, A.K.Dutta, K.K.Ray: Mater. Sci. Eng. A528 (2010) 589. 10.1016/j.msea.2010.09.057 Search in Google Scholar

[36] V.Loskovsek, M.Kalin, J.Vizintin: Vacuum80 (2006) 507. 10.1016/j.vacuum.2005.08.023 Search in Google Scholar

[37] S.ZhirafarA.Rezaeian, M.Pugh: J. Mater. Process. Technol.186 (2007) 298. 10.1016/j.jmatprotec.2006.12.046 Search in Google Scholar

[38] P.F.Stratton: Mater. Sci. Eng. A449–451 (2007) 809. 10.1016/j.msea.2006.01.162 Search in Google Scholar

[39] D.Das, K.K.Ray: Mater. Sci. Eng. A541 (2012) 45. 10.1016/j.msea.2012.01.130 Search in Google Scholar

[40] D.Das, A.K.Dutta, K.K.Ray: Cryogenics49 (2009) 176. 10.1016/j.cryogenics.2009.01.002 Search in Google Scholar

Received: 2016-09-16
Accepted: 2016-12-08
Published Online: 2017-02-22
Published in Print: 2017-03-13

© 2017, Carl Hanser Verlag, München