Accessible Requires Authentication Published by De Gruyter February 22, 2017

Preparation of vaterite CaCO3 microspheres by fast precipitation method

Zhi Gang Wu, Yang Guo, Jian Wang and Yan Rong Jia


Here we describe a rapid approach for synthesizing pure vaterite calcium carbonate microspheres through a fast precipitation method. The precipitated CaCO3 microspheres were produced in alkaline aqueous media with the addition of sodium citrate at room temperature. The obtained microspheres were investigated with scanning electron microscopy, dynamic light scattering, fourier transform infrared spectroscopy and powder X-ray diffraction. The characterization results reveal that the obtained microspheres are pure vaterite with an average diameter of 5 μm. The possible reason for the formation of vaterite CaCO3 microspheres instead of calcite has also been discussed.

*Correspondence address, Associate Professor Zhi Gang Wu, PhD, School of Science, North University of China, Xueyuan Road 3, Taiyuan, 030051, Shanxi, P. R. China, Tel.: +86-351-3923197, Fax: +86-351-3942724, E-mail: , Web:


[1] F.Manoli, S.Koutsopoulos, E.Dalas: J. Cryst. Growth182 (1997) 116. 10.1016/S0022-0248(97)00318-7 Search in Google Scholar

[2] C.Chen, H.F.Han, W.Yang, X.Y.Ren, X.D.Kong: Regener. Biomater.3 (2016) 57. 10.1093/rb/rbv029 Search in Google Scholar

[3] H.Colfen, L.Qi: Chem. Eur. J.7 (2001) 106. 10.1002/1521-3765(20010105)7:1<106::AID-CHEM106>3.0.CO;2-D Search in Google Scholar

[4] Y.Y.Zhao, W.Du, L.M.Sun, L.Yu, J.J.Jiao, R.Wang: Colloid Polym. Sci.291 (2013) 2191. 10.1007/s00396-013-2960-7 Search in Google Scholar

[5] E.M.Flaten, M.Seiersten, J.P.Andreassen: J. Cryst. Growth311 (2009) 3533. 10.1016/j.jcrysgro.2009.04.014 Search in Google Scholar

[6] S.P.Bao, X.Y.Chen, Z.Li, B.J.Yang, Y.C.Wu: Cryst. Eng. Comm.13 (2011) 2511. 10.1039/c0ce00794c Search in Google Scholar

[7] K.Naka, Y.Tanaka, Y.Chujo: Langmuir18 (2002) 3655. 10.1021/la011345d Search in Google Scholar

[8] P.Kasparov, P.M.Antonietti, H.Cöfen: Colloids Surf. A250 (2004) 153. 10.1016/j.colsurfa.2004.03.033 Search in Google Scholar

[9] Z.Zhang, Y.Xie, X.Xu, H.Pan, R.Tang: J. Cryst. Growth343 (2012) 62. 10.1016/j.jcrysgro.2012.01.025 Search in Google Scholar

[10] A.Sarkar, S.Mahapatra: Cryst. Growth Des.10 (2010) 2129. 10.1021/cg8002959 Search in Google Scholar

[11] J.R.Clarkon, T.J.Price, C.J.Adams: J. Chem. Soc., Dalton Trans.88 (1992) 243. 10.1039/FT9928800243 Search in Google Scholar

[12] Y.S.Han, G.Hadiko, M.Fuji, M.Takahashi: J. Eur. Ceram. Soc.26 (2006) 843. 10.1016/j.jeurceramsoc.2005.07.050 Search in Google Scholar

[13] M.El-S.I.Saraya, H.H.A.L.Rokbaa: Am. J. Nanomater.4 (2016) 44. 10.12691/ajn-4-2-3 Search in Google Scholar

[14] D.L.Jin, F.Wang, L.H.Yue: Cryst. Res. Technol.46 (2011) 140. 10.1002/crat.201000484 Search in Google Scholar

[15] S.H.Yu, H.Colfen, J.Hartmann: Adv. Funct. Mater.12 (2002) 541. 10.1002/1616-3028(20020805)12:8<541::AID-#6;ADFM541>3.0.CO;2-3 Search in Google Scholar

Received: 2016-10-25
Accepted: 2016-12-19
Published Online: 2017-02-22
Published in Print: 2017-03-13

© 2017, Carl Hanser Verlag, München