Accessible Requires Authentication Published by De Gruyter March 31, 2017

Microstructure and properties of hot extruded Mg-3Zn-Y-xCu (x = 0, 1, 3, 5) alloys

Bao-sheng Liu, Ya-fei Kuang, Da-qing Fang, Yue-sheng Chai and Yue-zhong Zhang


In petroleum drilling engineering, materials with high strength and rapid degradation are required for degradable fracturing ball applications. In this work, the microstructure, mechanical properties, and corrosion behavior of extruded Mg-3Zn-Y-xCu (x = 0, 1, 3, 5 weight percent) alloys are investigated using optical microscopy, scanning electronic microscopy equipped with energy dispersive X-ray spectroscopy, X-ray diffraction, transmission electronic microscopy, compression tests, electrochemical measurements, and hydrogen evolution tests, to explore their potential as excellent candidate alloys for degradable fracturing ball applications. It is found that the Mg-3Zn-Y alloy is mainly composed of α-Mg, Mg3Zn3Y2, and Mg3Zn6Y phases. After Cu addition, a new MgZnCu phase is formed, while the Mg3Zn3Y2 phase disappears. The Mg-3Zn-Y-3Cu alloy shows the highest compressive strength (473 MPa) and yield strength (402 MPa), mainly attributed to the combined effect of the fine-grain and dispersed precipitation of Mg3Zn6Y and MgZnCu. The corrosion rate of Mg-3Zn-Y-3Cu reaches 0.41 mm day−1 in 3.5 wt.% KCl solution. Consequently, Mg-3Zn-Y-3Cu alloy is a suitable degradable fracturing ball-seat material.

*Correspondence address, Professor Da-qing Fang, School of Materials Science and Engineering, Taiyuan University of Science and Technology, Taiyuan, 030024, P. R. China, Tel.: +86-351-6998145, Fax: +86-351-6998145, E-mail:


[1] B.L.Mordike, K.U.Kainer (Eds.): Magnesium alloys and their application, Werkstoff-Informationsgesellschaft, Frankfurt (1998). Search in Google Scholar

[2] D.Q.Fang, C.Liang, K.L.Cai, Z.G.Gao, Q.M.Peng, Y.S.Chai: Int. J. Mater. Res.106 (2015) 307. 10.3139/146.111177 Search in Google Scholar

[3] S.R.Agnew, J.F.Nie: Scr. Mater.63 (2010) 671. 2010.06.029. 10.1016/j.scriptamat Search in Google Scholar

[4] K.Hono, C.L.Mendis, T.T.Sasaki, K.Oh-ishi: Scr. Mater.63 (2010) 710. 2010.01.038. 10.1016/j.scriptamat Search in Google Scholar

[5] H.E.Friedrich, B.L.Mordike: Magnesium Technology, Springer-Verlag, Berlin Heidelberg (2006). Search in Google Scholar

[6] A.Atrens, G.L.Song, M.Liu, Z.M.Shi, F.Y.Cao, M.S.Dargusch: Adv. Eng. Mater.17 (2015) 400. 10.1002/adem.201400434 Search in Google Scholar

[7] A.Atrens, G.L.Song, F.Y.Cao, Z.M.Shi, P.K.Bowen: J. Magnesium Alloys1 (2013) 177. 10.1016/j.jma.2013.09.003 Search in Google Scholar

[8] B.S.Liu, Y.H.Wei, L.F.Hou: J. Mater. Eng. Perform.22 (2013) 50. 10.1007/s11665-012-0209-0 Search in Google Scholar

[9] B.S.Liu, Y.H.Wei, W.Y.Chen, L.F.Hou, C.L.Guo: Surf. Eng.31 (2015) 816. 10.1179/1743294414Y.0000000439 Search in Google Scholar

[10] B.S.Liu, Y.H.Wei, W.Y.Chen, L.F.Hou, C.L.Guo: Eng. Fail. Anal.42 (2014) 231. 10.1016/j.engfailanal.2014.04.014 Search in Google Scholar

[11] F.Y.Cao, Z.M.Shi, J.Hofstetter, P.J.Uggowitzer, G.L.Song, M.Liu, A.Atrens: Corros. Sci.75 (2013) 78. 10.1016/j.corsci.2013.05.018 Search in Google Scholar

[12] Z.Y.Xu, G.Agrawal: US Patent: us 20110132143A1 (2011). Search in Google Scholar

[13] Z.W.Geng, D.H.Xiao, L.Chen: J. Alloys Compd.686 (2016) 145. 10.1016/j.jallcom.2016.05.288 Search in Google Scholar

[14] L.Chen, Z.Wu, D.H.Xiao, Z.W.Geng, P.F.Zhou: Mater. Corros.66 (2015) 1159. 10.1002/maco.201408090 Search in Google Scholar

[15] D.H.Xiao, J.N.Wang, D.Ding, S.Chen: J. Alloys Compd.343 (2002) 77. 10.1016/S0925-8388(02)00076-2 Search in Google Scholar

[16] N.S.McIntgre, C.Chen: Corros. Sci.40 (1998) 1697. 10.1016/S0010-938X(98)00072-9 Search in Google Scholar

[17] Z.X.Li, M.Kawashita: J. Artif. Organs.14 (2011) 163. 10.1007/s10047-011-0585-5 Search in Google Scholar

[18] Z.M.Shi, A.Atrens: Corros. Sci.53 (2011) 226. 10.1016/j.corsci.2010.09.016 Search in Google Scholar

[19] Z.M.Shi, M.Liu, A.Atrens: Corros. Sci.52 (2010) 579. 10.1016/j.corsci.2009.10.016 Search in Google Scholar

[20] X.G.Fang, S.S.Wu, S.L., J.Wang, X.Yang: Mater. Sci. Eng. A679 (2017) 372. 10.1016/j.msea.2016.10.035 Search in Google Scholar

[21] Y.G.Liao, X.Q.Han, M.X.Zeng, M.Jin: Mater. Des.66 (2015) 581. 10.1016/j.matdes.2014.05.003 Search in Google Scholar

[22] M.C.Zhao, M.Liu, G.L.Song, A.Atrens: Adv. Eng. Mater.10 (2008) 93. 10.1002/adem.200700234 Search in Google Scholar

[23] Y.Zhang, X.Q.Zeng, C.Lu, W.J.Ding: Mater. Sci. Eng. A428 (2006) 91. 10.1016/j.msea.2006.04.103 Search in Google Scholar

[24] K.Hagihara, A.Kinoshita, Y.Sugino, M.Yamasaki, Y.Kawamura, H.Y.Yasuda, Y.Umakoshi: Acta Mater.58 (2010) 6282. 10.1016/j.actamat.2010.07.050 Search in Google Scholar

[25] R.Wu, Y.Yan, G.Wang, L.E.Murr, W.Han, Z.Zhang, M.Zhang: Int. Mater. Rev.60 (2015) 65. 10.1179/1743280414Y.0000000044 Search in Google Scholar

[26] Z.Q.Zhang, X.Liu, W.Y.Hu, J.H.Li, Q.C.Le, L.Bao, Z.J.Zhu, J.Z.Cui: J. Alloys Compd.624 (2015) 116. 10.1016/j.jallcom.2014.10.177 Search in Google Scholar

[27] Z.B.Wang, N.R.Tao, S.Li, W.Wang, G.Liu, J.Lu, K.Lu: Mater. Sci. Eng. A352 (2003) 144. 10.1016/S0921-5093(02)00870-5 Search in Google Scholar

[28] Z.N.Farhat, Y.Ding, D.O.Northwood, A.T.Alpas: Mater. Sci. Eng. A206 (1996) 302. 10.1016/0921-5093(95)10016-4 Search in Google Scholar

[29] R.Armstrong, I.Codd, R.M.Douthwaite, N.J.Petch: Philos. Mag.7 (1962) 45. 10.1080/14786436208201857 Search in Google Scholar

[30] X.H.Chen, L.Z.Liu, F.S.Pan, J.J.Mao, X.Y.Xu, T.Yan: Mater. Sci. Eng. B197 (2015) 67. 10.1016/j.mseb.2015.03.012 Search in Google Scholar

[31] A.Singh, H.Somekawa, T.Mukai: Mater. Sci. Eng. A528 (2011) 6647. 10.1016/j.msea.2011.05.001 Search in Google Scholar

[32] R.O.Scattergood, D.J.Bacon: Philos. Mag.31 (1975) 179. 10.1080/14786437508229295 Search in Google Scholar

[33] G.L.Song, A.Atrens: Adv. Eng. Mater.1 (1999) 11. 10.1002/(SICI)1527-2648(199909)1:1<11::AID-ADEM11>3.0.CO;2-N Search in Google Scholar

Received: 2016-12-06
Accepted: 2017-01-10
Published Online: 2017-03-31
Published in Print: 2017-04-13

© 2017, Carl Hanser Verlag, München