Accessible Requires Authentication Published by De Gruyter March 31, 2017

Effects of silicon on characteristics of dynamic strain aging in a near-α titanium alloy

Kartik Prasad, Vikas Kumar, Kota Bhanu Sankara Rao and Mahadevan Sundararaman


The effects of temperature and strain rate on the tensile properties of Timetal 834 near-α titanium alloy and alloy 834 without silicon were examined in the temperature range of 250 °C to 600 °C, employing strain rates in the range of 6.67 × 10−6 s−1 to 6.67 × 10−3 s−1. Manifestations of dynamic strain aging such as serrated flow, plateaus in the variations of 0.2 % yield strength and ultimate tensile strength, peak in strain hardening exponent with temperature and negative strain rate sensitivity were observed in both the alloys. Serration maps in terms of strain rate versus temperature are presented for both the alloys. The activation energy for serrated flow was determined in both the alloys by employing various methodologies mentioned in the literature. Analysis of the results suggested that addition of Si leads to increased severity of dynamic strain aging.

*Correspondence address, Kartik Prasad, PhD, Scientist, Mechanical Behavior Group, Defence Metallurgical Research Laboratory, Kanchanbagh, Hyderabad – 500 058, India, Tel.: +91 40 24586407, Fax: +91 40 24340266, E-mail:


[1] D.F.Neal, in: P.Lacombe, R.Tricot, G.Beranger (Eds.), Proc. 6th World Conference on Titanium, Cannes, France (1988) 253258. Search in Google Scholar

[2] G.Lütjering, J.C.Williams: Titanium, 2nd Ed., Springer, Berlin (2007). Search in Google Scholar

[3] N.Singh, V.Singh: Metall. Mater. Trans. A30 (1999) 2547. 10.1007/s11661-999-0263-x Search in Google Scholar

[4] K.Prasad, V.K.Varma: Mater. Sci. Eng. A486 (2008) 158. 10.1016/j.msea.2007.09.020 Search in Google Scholar

[5] K.Prasad, S.V.Kamat: Mater. Sci. Eng. A490 (2008) 477. 10.1016/j.msea.2008.01.005 Search in Google Scholar

[6] K.Prasad, R.Sarkar, P.Ghosal, V.K.Varma: Mater. Sci. Eng.A494 (2008) 227. 10.1016/j.msea.2008.04.025 Search in Google Scholar

[7] K.Prasad, V.Kumar: Mater. Des.31 (2010) 2716. 10.1016/j.matdes.2010.01.031 Search in Google Scholar

[8] K.Prasad, R.Sarkar, V.Kumar, K.B.S.Rao, M.Sundararaman: Mater. Sci. Eng. A662 (2016) 373. 10.1016/j.msea.2016.03.079 Search in Google Scholar

[9] K.Prasad, S.Abhaya, G.Amarendra, V.Kumar, K.V.Rajulapati, K.B.S.Rao: Eng. Fract. Mech.102 (2013) 194. 10.1016/j.engfracmech.2013.02.017 Search in Google Scholar

[10] K.Prasad, V.Kumar, K.B.S.Rao, M.Sundararaman: Metall. Mater. Trans. A47 (2016) 3713. 10.1007/s11661-016-3482-y Search in Google Scholar

[11] K.Prasad, R.Sarkar, K.B.S.Rao, M.Sundararaman: Metall. Mater. Trans. A47 (2016) 4904. 10.1007/s11661-016-3670-9 Search in Google Scholar

[12] K.Prasad, S.Amrithapandian, B.K.Panigrahi, V.Kumar, K.B.S.Rao, M.Sundararaman: Mater. Sci. Eng. A638 (2015) 90. 10.1016/j.msea.2015.04.060 Search in Google Scholar

[13] P.G.McCormick: Acta Metall.20 (1972) 351. 10.1016/0001-6160(72)90028-4 Search in Google Scholar

[14] P.Rodriguez: Bull. Mater. Sci.6 (1984) 653. 10.1007/BF02743993 Search in Google Scholar

[15] K.W.Qian, R.E.Reed-Hill: Acta Metall.31 (1983) 87. 10.1016/0001-6160(83)90067-6 Search in Google Scholar

[16] E.Pink, A.Grinberg: Acta Metall.30 (1982) 2153. 10.1016/0001-6160(82)90136-5 Search in Google Scholar

[17] ASTM Standard E 8/8M-11: Standard test methods for tension testing of metallic materials. In: Annual book of ASTM standards, vol. 3.01, ASTM International, West Conshohocken (PA), USA (2012). Search in Google Scholar

[18] G.E.Dieter: Mechanical Metallurgy, McGraw-Hill Book Co., London, UK (1988). Search in Google Scholar

[19] J.M.Robinson, M.P.Shaw: Int. Mater. Rev.39 (1994) 113. 10.1179/imr.1994.39.3.113 Search in Google Scholar

[20] D.F.Neal, S.PFox, in: F.H.Froes, I.Caplan (Eds.), Titanium 92 Science and Technology, The Minerals, Metals & Materials Society (1993) 287294. Search in Google Scholar

[21] R.W.Hayes, W.C.Hayes: Acta Metall.32 (1984) 259. 10.1016/0001-6160(84)90054-3 Search in Google Scholar

[22] V.D.Beukel: Acta Metall.28 (1980) 965. 10.1016/0001-6160(80)90114-5 Search in Google Scholar

[23] M.Doner, H.Conrad: Metall. Trans.4 (1973) 2809. 10.1007/BF02644581 Search in Google Scholar

[24] H.Conrad: Prog. Mater. Sci.26 (1981) 123. 10.1016/0079-6425(81)9001-3 Search in Google Scholar

[25] M.R.Winstone, R.D.Rawlings, D.R.F.West: J. Less Common Metals31 (1973) 143. 10.1016/0022-5088(73)90137-9 Search in Google Scholar

[26] R.E.Smallman, R.J.Bishop: Modern Physical Metallurgy and Materials Engineering, 6th Ed., ButterworthHeinemann, UK (1999) 219. Search in Google Scholar

Received: 2016-06-21
Accepted: 2016-11-29
Published Online: 2017-03-31
Published in Print: 2017-04-13

© 2017, Carl Hanser Verlag, München