Accessible Requires Authentication Published by De Gruyter March 31, 2017

Electrochemical performance of CuBi2O4 nanoparticles synthesized via a polyacrylamide gel route

Fei Wang, Hua Yang, Yunchuan Zhang and Ruishan Li

Abstract

CuBi2O4 nanoparticles were prepared via a polyacrylamide gel route. Field-emission scanning electron microscopy observation shows that the particles are shaped like spheres and have an average particle size of ∼230 nm. Ultraviolet–visible diffuse reflectance spectroscopy reveals that the particles have a bandgap energy of 1.88 eV. The electrochemical performance of the sample was investigated by means of cyclic voltammetry, galvanostatic charge–discharge, and electrochemical impedance spectroscopy in 2 M KOH, 6 M KOH, and 2 M NaOH electrolytes at different temperatures. It is demonstrated that the temperature has an important effect on the electrochemical performance of the sample, and relatively higher specific capacitance is observed at 45 °C, reaching 1 458 F g−1 in 2 M KOH electrolyte at a current density of 2 A g−1. In addition, the sample exhibits an increased capacitance in a higher-concentration electrolyte, but its charge–discharge cycling stability is decreased. Moreover, it is found that the sample exhibits relatively larger specific capacitance in KOH electrolyte than in NaOH electrolyte.


*Correspondence address, Prof. Hua Yang, School of Science, Lanzhou University of Technology, Lanzhou 730050, P. R. China, Tel.: +86 931 2973783, Fax: +86 931 2976040, E-mail:

References

[1] P.Simon, Y.Gogotsi: Nat. Mater.7 (2008) 845854. 10.1038/nmat2297 Search in Google Scholar

[2] M.Winter, R.J.Brodd: Chem. Rev.104 (2004) 42454269. 10.1021/cr040110e Search in Google Scholar

[3] B.E.Conway: Electrochemical supercapacitors: scientific fundamentals and technological applications, Kluwer Academic, New York, USA (1999). 10.1007/978-1-4757-3058-6 Search in Google Scholar

[4] G.P.Wang, L.Zhang, J.J.Zhang: Chem. Soc. Rev.41 (2012) 797828. 10.1039/C1CS15060J Search in Google Scholar

[5] C.C.Hu, K.H.Chang, M.C.Lin, Y.T.Wu: Nano Lett.6 (2006) 26902695. 10.1021/nl061576a Search in Google Scholar

[6] G.W.Yang, C.L.Xu, H.L.Li: Chem. Commun.48 (2008) 65376539. 10.1039/B815647F Search in Google Scholar

[7] N.Henry, O.Mentre, J.C.Boivin, F.Abraham: Chem. Mater.13 (2001) 543551. 10.1021/cm000509t Search in Google Scholar

[8] K.Yoshii, T.Fukuda, H.Akahama, J.Kano, T.Kambe, N.Ikeda: Physica C471 (2011) 766769. 10.1016/j.physc.2011.05.049 Search in Google Scholar

[9] V.M.Denisov, L.A.Irtyugo, L.T.Denisova, S.D.Kirik, L.G.Chumilina: Phys. Solid State54 (2012) 19431945. 10.1134/S1063783412090089 Search in Google Scholar

[10] J.Zhang, Y.Jiang: J. Mater. Sci.: Mater. Electron.26 (2015) 43084312. 10.1007/s10854-015-2983-6 Search in Google Scholar

[11] G.Sharma, Z.Zhao, P.Sarker, B.A.Nail, J.Wang, M.N.Huda, F.E.Osterloh: J. Mater. Chem. A4 (2016) 29362942. 10.1039/c5ta07040f Search in Google Scholar

[12] X.Chen, Y.Dai, J.Guo: Mater. Lett.161 (2015) 251254. 10.1016/j.matlet.2015.08.118 Search in Google Scholar

[13] S.P.Berglund, F.F.Abdi, P.Bogdanoff, A.Chemseddine, D.Friedrich, R.van de Krol: Chem. Mater.28 (2016) 42314242. 10.1021/acs.chemmater.6b00830 Search in Google Scholar

[14] M.Wang, J.Zai, X.Wei, W.Chen, N.Liang, M.Xu, R.Qi, X.Qian: CrystEngComm17 (2015) 40194025. 10.1039/c5ce00040 h Search in Google Scholar

[15] L.Zhu, P.Basnet, S.R.Larson, L.P.Jones, J.Y.Howe, R.A.Tripp, Y.Zhao: Chemistry Select1 (2016) 15181524. 10.1002/slct.201600164 Search in Google Scholar

[16] Y.Nakabayashi, M.Nishikawa, Y.Nosaka: Electrochim. Acta125 (2014) 191198. 10.1016/j.electacta.2014.01.088 Search in Google Scholar

[17] A.A.Ensafi, N.Ahmadi, B.Rezaei: J. Alloys Compd.652 (2015) 3947. 10.1016/j.jallcom.2015.08.226 Search in Google Scholar

[18] Y.C.Zhang, H.Yang, W.P.Wang, H.M.Zhang, R.S.Li, X.X.Wang, R.C.Yu: J. Alloys Compd.684 (2016) 707713. 10.1016/j.jallcom.2016.05.201 Search in Google Scholar

[19] Y.Zhang, Y.Xie, J.Li, G.Yang, T.Bai, J.Wang: J. Alloys Compd.580 (2013) 172175. 10.1016/j.jallcom.2013.05.121 Search in Google Scholar

[20] R.Patil, S.Kelkar, R.Naphade, S.Ogale: J. Mater. Chem. A2 (2014) 36613668. 10.1039/c3ta14906d Search in Google Scholar

[21] W.-D.Oha, S.-K.Lua, Z.Dong, T.-T.Lim: Nanoscale7 (2015) 81498158. 10.1039/c5nr01428j Search in Google Scholar

[22] W.Liu, S.Chen, S.Zhang, W.Zhao, H.Zhang, X.Yu: J. Nanopart. Res.12 (2010) 13551366. 10.1007/s11051-009-9672-4 Search in Google Scholar

[23] M.Zhou, H.Yang, T.Xian, R.S.Li, H.M.Zhang, X.X.Wang: J. Hazard. Mater.289 (2015) 149157. 10.1016/j.jhazmat.2015.02.054 Search in Google Scholar

[24] W.P.Wang, H.Yang, T.Xian, J.L.Jiang: Mater. Trans.53 (2012) 15861589. 10.2320/matertrans.M2012151 Search in Google Scholar

[25] V.Vivier, A.Regis, G.Sagon, J.Y.Nedelec, L.T.Yu, C.Cachet-Vivier: Electrochim. Acta46 (2001) 907914. 10.1016/S0013-4686(00)00677-0 Search in Google Scholar

[26] V.D.Nithya, B.Hanitha, S.Surendran, D.Kalpana, R.Kalai Selvan: Ultrason. Sonochem.22 (2015) 300310. 10.1016/j.ultsonch.2014.06.014 Search in Google Scholar

[27] Z.Khan, S.Bhattu, S.Haram, D.Khushalani: RSC Adv.4 (2014) 1737817381. 10.1039/c4ra01273a Search in Google Scholar

[28] F.Wang, H.Yang, H.M.Zhang, J.Y.Su, X.X.Wang: J. Electron. Mater.46 (2016) 182187. 10.1007/s11664-016-4876-8 Search in Google Scholar

[29] V.Vivier, C.Cachet-Vivier, S.Mezaille, B.L.Wu, C.S.Cha, J.Y.Nedelec, M.Fedoroff, D.Michel, L.T.Yu: J. Electrochem. Soc.147 (2000) 42524262. 10.1149/1.1394049 Search in Google Scholar

[30] M.D.Stoller, S.J.Park, Y.W.Zhu, J.H.An, R.S.Ruoff: Nano Lett.8 (2008) 34983502. 10.1021/nl802558y Search in Google Scholar

[31] T.P.Gujar, V.R.Shinde, C.D.Lokhande, S.-H.Han: J. Power Sources161 (2006) 14791485. 10.1016/j.jpowsour.2006.05.036 Search in Google Scholar

[32] K.B.Li, D.W.Shi, Z.Y.Cai, G.L.Zhang, Q.A.Huang, D.Liu, C.P.Yang: Electrochim. Acta174 (2015) 596600. 10.1016/j.electacta.2015.06.008 Search in Google Scholar

Received: 2016-11-05
Accepted: 2017-01-17
Published Online: 2017-03-31
Published in Print: 2017-04-13

© 2017, Carl Hanser Verlag, München