Accessible Requires Authentication Published by De Gruyter May 4, 2017

Thermal shock behavior of rare earth modified alumina ceramic composites

Junlong Sun and Changxia Liu

Abstract

Alumina matrix ceramic composites toughened by AlTiC master alloys, diopside and rare earths were fabricated by hot-pressing and their thermal shock behavior was investigated and compared with that of monolithic alumina. Results showed that the critical thermal shock temperature (ΔT) of monolithic alumina was 400 °C. However, it decreased to 300 °C for alumina incorporating only AlTiC master alloys, and increased with further addition of diopside and rare earths. Improvement of thermal shock resistance was obtained for alumina ceramic composites containing 9.5 wt.% AlTiC master alloys and 0.5 wt.% rare earth additions, which was mainly attributed to the formation of elongated grains in the composites.


*Correspondence address, Associate Professor Liu Changxia, School of Transportation, Ludong University, Yantai 264025, Shandong Province, P. R. China, Tel.: +86-15866472136, Fax: +86-0535-6681847, E-mail:

References

[1] D.P.H.Hasselman: J. Am. Ceram. Soc.49 (1965) 103. 10.1111/j.1151-2916.1966.tb13218.x Search in Google Scholar

[2] D.P.H.Hasselman: J. Am. Ceram. Soc.52 (1969) 600. 10.1111/j.1151-2916.1969.tb15848.x Search in Google Scholar

[3] D.P.H.Hasselman: Ceram. Bull.49 (1970) 1033. Search in Google Scholar

[4] W.D.Kingery: J. Am. Ceram. Soc.38 (1954) 3. 10.1111/j.1151-2916.1955.tb14545.x Search in Google Scholar

[5] N.M.Rendtorff, L.B.Garrido, E.F.Aglietti: Mater. Sci. Eng.A498 (2008) 208. 10.1016/j.msea.2008.08.036 Search in Google Scholar

[6] C.X.Liu, J.L.Sun, Z.Y.Xie: J. Alloys Compd.546 (2013) 102. 10.1016/j.jallcom.2012.08.097 Search in Google Scholar

[7] C.X.Liu, J.L.Sun, Z.M.Tian: Int. J. Mater. Res.104 (2013) 1137. 10.3139/146.110967 Search in Google Scholar

[8] C.X.Liu, J.H.Zhang, J.L.Sun, X.H.Zhang: J. Eur. Ceram. Soc.28 (2008) 199. 10.1016/j.jeurceramsoc.2007.05.023 Search in Google Scholar

[9] C.X.Liu, J.H.Zhang, J.L.Sun, X.H.Zhang, Y.J.Hu: Ceram. Int.33 (2007) 1149. 10.1016/j.ceramint.2006.03.018 Search in Google Scholar

[10] C.X.Liu, J.L.Sun, M.H.Yao: Mater. Res. Innovations17 (2013) 293. 10.1179/1433075X12Y.0000000075 Search in Google Scholar

[11] X.Q.You, T.Z.Si, N.Liu, P.P.Ren, Y.D.Xu, J.P.Feng: Ceram. Int.31 (2005) 33. 10.1016/j.ceramint.2004.02.009 Search in Google Scholar

[12] L.Y.Shen, M.J.Liu, X.Z.Liu, B.Li: Mater. Res. Bull.42 (2007) 2048. 10.1016/j.materresbull.2007.02.001 Search in Google Scholar

[13] P.Hvizdoš, D.Jonsson, M.Anglada, G.Anné, O.V.D.Biest: J. Eur. Ceram. Soc.27 (2007) 1365. 10.1016/j.jeurceramsoc.2006.05.030 Search in Google Scholar

[14] P.K.Panda, V.A.Jaleel, G.Lefebvre: Mater. Sci. Eng. A485 (2008) 558. 10.1016/j.msea.2007.10.080 Search in Google Scholar

[15] H.Majidian, T.Ebadzadeh, E.Salahi: Mater. Sci. Eng. A530 (2011) 585. 10.1016/j.msea.2011.10.027 Search in Google Scholar

[16] M.M.S.Wahsh, R.M.Khattab, M.Awaad: Mater. Des.41 (2012) 31. 10.1016/j.matdes.2012.04.040 Search in Google Scholar

[17] I.D.Katsavou, M.K.Krokida, I.C.Ziomas: Ceram. Int.38 (2012) 5747. 10.1016/j.ceramint.2012.04.021 Search in Google Scholar

[18] I.Z.Tiluga, V.Svinka, R.Svinka, L.Grase: Ceram. Int.41 (2015) 11504. 10.1016/j.ceramint.2015.05.116 Search in Google Scholar

[19] C.Aksel, P.D.Warren: J. Eur. Ceram. Soc.23 (2003) 301. 10.1016/S0955-2219(02)00178-4 Search in Google Scholar

[20] M.Kalantar, G.Fantozzi: Mater. Sci. Eng. A472 (2008) 237. 10.1016/j.msea.2007.03.032 Search in Google Scholar

[21] A.Kovalčíková, J.Dusza, P.Šajgalík: J. Eur. Ceram. Soc.29 (2009) 2387. 10.1016/j.jeurceramsoc.2009.01.021 Search in Google Scholar

Received: 2016-12-07
Accepted: 2017-02-01
Published Online: 2017-05-04
Published in Print: 2017-05-15

© 2017, Carl Hanser Verlag, München