Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter May 30, 2017

Atomic mobility in liquid and fcc Al–Si–Mg–RE (RE = Ce, Sc) alloys and its application to the simulation of solidification processes in RE-containing A357 alloys

  • Zhao Lu , Ying Tang and Lijun Zhang


This paper first provides a critical review of experimental and theoretically-predicted diffusivities in both liquid and fcc Al–Si–Mg–RE (RE = Ce, Sc) alloys as-reported by previous researchers. The modified Sutherland equation is then employed to predict self- and impurity diffusivities in Al–Si–Mg–RE melts. The self-diffusivity of metastable fcc Sc is evaluated via the first-principles computed activation energy and semi-empirical relations. Based on the critically-reviewed and presently evaluated diffusivity information, atomic mobility descriptions for liquid and fcc phases in the Al–Si–Mg–RE systems are established by means of the Diffusion-Controlled TRAnsformation (DICTRA) software package. Comprehensive comparisons show that most of the measured and theoretically-predicted diffusivities can be reasonably reproduced by the present atomic mobility descriptions. The atomic mobility descriptions for liquid and fcc Al–Si–Mg–RE alloys are further validated by comparing the model-predicted differential scanning calorimetry curves for RE-containing A357 alloys during solidification against experimental data. Detailed analysis of the curves and microstructures in RE-free and RE-containing A357 alloys indicates that both Ce and Sc can serve as the grain refiner for A357 alloys, and that the grain refinement efficiency of Sc is much higher.

*Correspondence address, Professor Dr. Lijun Zhang, State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083, P. R. China, Tel.: +86731 88877963, Fax: +86731 88710855, E-mail: ,


[1] J.G.Kaufman, E.L.Rooy: Aluminum Alloy Castings, Properties, Processes, and Applications, ASM International (2004) 39. PMid:14692814; 10.1361/aacp2004p039Search in Google Scholar

[2] Z.Fan, Y.Wang, Y.Zhang, T.Qin, X.R.Zhou, G.E.Thompson, T.Pennycook, T.Hashimoto: Acta Mater.84 (2015) 292. 10.1016/j.actamat.2014.10.055Search in Google Scholar

[3] H.Li, T.Sritharan, Y.M.Lam: J. Mater. Process. Technol.66 (1997) 153. 10.1016/S0924-0136(96)02536-8Search in Google Scholar

[4] A.M.Nabawy, A.M.Samuel, S.A.Alkahtani, K.A.Abuhasel, F.H.Samuel: Int. J. Mater. Res.107 (2016) 446. 10.3139/146.111360Search in Google Scholar

[5] U.Patakham, J.Kajornchaiyakul, C.Limmaneevichitr: J. Alloys Compd.575(2013) 273. 10.1016/j.jallcom.2013.05.139Search in Google Scholar

[6] L.J.Zhang, Y.Du: J. Phase Equilib. Diffus.37 (2016) 259. 10.1007/s11669-015-0422-2Search in Google Scholar

[7] L.J.Zhang, M.Stratmann, Y.Du, B.Sundman, I.Steinbach: Acta Mater.88 (2015) 156. 10.1016/j.actamat.2014.11.037Search in Google Scholar

[8] Q.Chen, K.S.Wu, G.Sterner, P.Mason: J. Mater. Eng. Perform.23 (2014) 4193. 10.1007/s11665-014-1255-6Search in Google Scholar

[9] Z.Y.Hou, P.Hedström, Y.B.Xu, W.Di, J.Odqvist: ISIJ International54 (2014) 2649. 10.1016/S0924-0136(96)02536-8Search in Google Scholar

[10] Z.Lu, L.J.Zhang: Thermodynamic description of the quaternary Al–Si–Mg–Ce system, Thermochim. Acta (2017) (under review).Search in Google Scholar

[11] Z.Lu, L.J.Zhang: Mater. Des.116 (2017) 427. 10.1016/j.matdes.2016.12.034Search in Google Scholar

[12] R.Wang, W.M.Chen, L.J.Zhang, D.DLiu, X.Li, Y.Du, Z.P.Jin: J. Non–Cryst. Solids379 (2013): 201. 10.1016/j.jnoncrysol.2013.08.012Search in Google Scholar

[13] Y.Tang, L.J.Zhang, Y.Du: CALPHAD49 (2015) 58. 10.1016/j.calphad.2015.03.002Search in Google Scholar

[14] L.JZhang, Y.Du, I.Steinbach, Q.Chen, B.YHuang: Acta Mater.58 (2010) 3664. 10.1016/j.actamat.2010.03.002Search in Google Scholar

[15] W.M.Chen, L.J.Zhang, Y.Du, B.Y.Huang: Philos. Mag.94 (2014) 1552. 10.1080/14786435.2014.890755Search in Google Scholar

[16] T.Iida, R.I.L.Guthrie: The physical properties of liquid metals, Oxford University, UK (1993).Search in Google Scholar

[17] T.Iida, R.Guthrie, M.Isac, N.Tripathi: Metall. Mater. Trans. B37 (2006) 403. 10.1007/s11663-006-0025-8Search in Google Scholar

[18] T.Angsten, T.Mayeshiba, H.Wu, D.Morgan: New J. Phys.16 (2014) 015018/1. 10.1088/1367-2630/16/1/015018Search in Google Scholar

[19] J.Askill: Tracer Diffusion Data for Metals, Alloys, and Simple Oxides, IFI/Plenum, New York–Washington–London (1970). 10.1007/978-1-4684-6075-9Search in Google Scholar

[20] Y.Wang, S.Curtarolo, C.Jiang, R.Arroyave, T.Wang, G.Ceder, L.Q.Chen, Z.K.Liu: CALPHAD28 (2004) 79. 10.1016/j.calphad.2004.05.002Search in Google Scholar

[21] Y.Du, Y.A.Chang, B.Y.Huang, W.P.Gong, Z.Jin, H.H.Xu, Z.H.Yuan, Y.Liu, Y.H.He, F.Y.Xie: Mater. Sci. Eng. A363 (2003) 140. 10.1016/S0921-5093(03)00624-5Search in Google Scholar

[22] J.Horbach, S.K.Das, A.Griesche, M.P.Macht, G.Grohberg, A.Meyer: Phys. Rev. B75 (2007) 174304. 10.1103/PhysRevB.75.174304Search in Google Scholar

[23] J.O.Andersson, J.Ågren: J. Appl. Phys.72 (1992) 1350. 10.1063/1.351745Search in Google Scholar

[24] S.Q.Wang, D.D.Liu, Y.Du, L.J.Zhang, Q.Chen, A.Engström: Int. J. Mater. Res.104 (2013) 721. 10.3139/146.110923Search in Google Scholar

[25] W.M.Chen, L.J.Zhang, Y.Du, B.YHuang: Int. J. Mat. Res.105 (2014) 827. 10.3139/146.111103Search in Google Scholar

[26] W.M.Chen, L.J.Zhang, Y.Du: CALPHAD52 (2016) 159. 10.1016/j.calphad.2016.01.002Search in Google Scholar

[27] J.Ågren: Curr. Opin. Solid State Mater. Sci.1 (1996) 355. 10.1016/S1359-0286(96)80025-8Search in Google Scholar

[28] W.J.Yao, N.Wang: Mater. Sci. Forum656 (2010) 1404. 10.4028/ in Google Scholar

[29] B.Sun, X.Bian, J.Hu, T.Mao, Y.Zhang: Mater. Charact.59 (2008) 820. 10.1016/j.matchar.2007.06.006Search in Google Scholar

[30] M.P.Dariel, D.Dayan: Phys. Rev. B4 (1971) 4348. 10.1103/PhysRevB.4.4348Search in Google Scholar

[31] S.P.Murarka, R.P.Agarwala: Diffusion of rare earth elements in aluminum, Bhabha Atomic Research Centre, Bombay India (1968).Search in Google Scholar

[32] W.P.Cai: J. Mater. Sci. Lett.16 (1997) 1824. 10.1023/A:1018572803223Search in Google Scholar

[33] S.I.Fujikawa: Defect and Diffusion Forum143 (1997) 115. 10.4028/ in Google Scholar

[34] M.A.Kerkove, T.D.Wood, P.G.Sanders, S.L.Kampe, D.Swenson: Metall. Mater. Trans. A45 (2014) 3800. 10.1007/s11661-014-2275-4Search in Google Scholar

[35] C.Watanabe, T.Kondo, R.Monzen: Metall. Mater. Trans. A35 (2004) 3003. 10.1007/s11661-004-0247-9Search in Google Scholar

[36] C.Watanabe, D.Watanabe, R.Monzen: Mater. Trans.47 (2006) 2285. 10.2320/matertrans.47.2285Search in Google Scholar

[37] A.Borgenstam, L.Höglund, J.Ågren, A.Engström: J. Phase Equilib.21 (2000) 269. 10.1361/105497100770340057Search in Google Scholar

[38] T.Iida, R.Guthrie, N.Tripathi: Metall. Mater. Trans. B37 (2006) 559. 10.1007/s11663-006-0039-2Search in Google Scholar

[39] E.Scheil: Z. Metallkd.34 (1942) 70.10.1515/ijmr-1942-340303Search in Google Scholar

Received: 2017-01-30
Accepted: 2017-03-31
Published Online: 2017-05-30
Published in Print: 2017-06-12

© 2017, Carl Hanser Verlag, München

Downloaded on 31.5.2023 from
Scroll to top button