Accessible Requires Authentication Published by De Gruyter July 5, 2017

Tensile behavior and microstructural evolution for AZ31 magnesium alloys sheet at high strain rate

Junrui Xu, Jiai Su, Junjia Cui, Yang Liu, Xu Zhang and Guangyong Sun

Abstract

Mechanical behavior and microstructural evolution of AZ31 sheet at high strain rates and elevated temperatures were investigated using a tensile Split-Hopkinson bar. Flow stress and elongation increased with increasing strain rate under high strain rate conditions, but temperature had little effect. Microstructural evolution was analyzed by optical and scanning electron microscopy. Twinning was observed at high strain rates, even at 200°C and 250°C, but not under quasi-static tension. Dynamic recrystallization was observed under quasi-static conditions with increasing temperature, but not at high strain rates. Dimples were observed over the entire temperature range at high strain rates. Increasing ductility was limited compared with that under quasi-static conditions. Dynamic recrystallization occurred at strain rates of 2 000 s−1 and 3 000 s−1 at 250 °C, but the recrystallized grains were very small.


*Correspondence address, Dr. Junrui Xu, School of Mechanical Engineering, Xiangtan University, 411105 Xiangtan, P. R. China, Tel.: +86-0731-58292209, Fax: +86-0731-58292209, E-mail:

References

[1] S.Spigarelli, M.ElMehtedi, D.Ciccarelli, M.Regev: Mater. Sci. Eng. A528 (2011) 6919. 10.1016/j.msea.2011.05.032 Search in Google Scholar

[2] T.Al-Samman, X.Li, S.G.Chowdhury: Mater. Sci. Eng. A527 (2010) 3450. 10.1016/j.msea.2010.02.008 Search in Google Scholar

[3] I.A.Maksouda, H.Ahmed, R.Johannes: Mater. Sci. Eng. A504 (2009) 40. 10.1016/j.msea.2008.10.033 Search in Google Scholar

[4] P.S.Roodposhti, A.Sarkar, L.M.Korukonda: Mater. Sci. Eng. A626 (2015) 195. 10.1007/s13632-015-0189-1 Search in Google Scholar

[5] N.Munroe, X.Tan: Scr. Mater.36 (1997) 138. 10.1016/S1359-6462(97)00048-1 Search in Google Scholar

[6] S.R.Agnew, M.H.Yoo: Acta. Mater.49 (2001) 4277. 10.1016/S1359-6454(01)00297-X Search in Google Scholar

[7] M.R.Barnett: Mater. Sci. Eng. A464 (2007) 1. 10.1016/j.msea.2006.12.037 Search in Google Scholar

[8] M.H.Yoo: Metall. Mater. Trans. A12 (1981) 409. 10.1007/BF02648537 Search in Google Scholar

[9] L.Jiang, J.J.Jonas, R.Mishra, A.Luo, A.Sachdev, S.Godet: Acta. Mater.55 (2007) 3899. 10.1016/j.actamat.2007.03.006 Search in Google Scholar

[10] G.Y.Chin, W.L.Mammel: Metall. Trans.1 (1970) 1721. 10.1007/BF02642022 Search in Google Scholar

[11] M.R.Barnett: Metall. Mater. Trans.34 (2003) 1799. 10.1007/s11661-003-0146-5 Search in Google Scholar

[12] S.R.Agnew, O.Duygulu: Int. J. Plasticity21 (2005) 1161. 10.1016/j.ijplas.2004.05.018 Search in Google Scholar

[13] X.Y.Lou, M.Li: Int. J. Plasticity23 (2007) 44. 10.1016/j.ijplas.2006.03.005 Search in Google Scholar

[14] B.Hutchinson, M.R.Barnett, A.Ghaderi, P.Cizek, I.Sabirov: Int. J. Mater. Res.100 (2009) 556. 10.3139/146.110070 Search in Google Scholar

[15] T.Al-Samman, G.Gottstein: Mater. Sci. Eng. A490 (2008) 411. 10.1016/j.msea.2008.02.004 Search in Google Scholar

[16] K.Ishikawa, H.Watanabe, T.Mukai: J. Mater. Sci.40 (2005) 1577. 10.1007/s10853-005-0656-1 Search in Google Scholar

[17] H.Asgari, J.A.Szpunar, A.G.Odeshi: Mater. Des.61 (2014) 26. 10.1016/j.matdes.2014.04.049 Search in Google Scholar

[18] T.Matthew, M.F.Tucker: Scr. Mater.60 (2009) 182. 10.1016/j.scriptamat.2008.10.011 Search in Google Scholar

[19] S.Kurukuri, M.J.Worswick, D.G.Tari, R.K.Mishra, J.T.Carter: Phil. Trans. R. Soc.372 (2015) 20130216. PMid: 24711496; 10.1098/rsta.2013.0216 Search in Google Scholar

[20] Q.Z.Li: J. Appl. Phys.109 (2011) 103514. 10.1063/1.3585870 Search in Google Scholar

[21] Q.Z.Li: Mater. Sci. Eng. A540 (2012) 130. 10.1016/j.msea.2012.01.116 Search in Google Scholar

[22] R.Smerd, S.Winkler, C.Salisbury, M.Worswick, D.Lloyd, M.Finn: Int. J. Impact. Eng.32 (2005) 541. 10.1016/j.ijimpeng.2005.04.013 Search in Google Scholar

[23] R.Smerd, S.Winkler, C.Salisbury, M.Worswick, D.Lloyd, M.Finn: Int. J. Impact. Eng.32 (2005) 541. 10.1016/j.ijimpeng.2005.04.013 Search in Google Scholar

[24] Y.S.Lee, M.C.Kim, S.W.Kim, Y.N.Kwon, S.W.Choi, J.H.Lee: J. Maters. Process. Technol.187–188 (2007) 103. 10.1016/j.jmatprotec.2006.11.118 Search in Google Scholar

[25] H.Takud, T.Morishit, T.Kinoshit, N.Shirakaw: J. Maters. Process. Technol.164–165 (2005) 1258. 10.1016/j.jmatprotec.2005.02.034 Search in Google Scholar

[26] H.Watanabe, K.Ishikawa, T.Mukai: Key. Eng. Mater.340–341 (2007) 107. 10.4028/www.scientific.net/KEM.340-341.107 Search in Google Scholar

[27] S.K.Akhtar, P.Amit, G.Thomas, R.K.Maja: Int. J. Plasticity27 (2011) 688. 10.1016/j.ijplas.2010.08.009 Search in Google Scholar

[28] N.V.Dudamell, I.Ulacia, F.Ga'lvez, S.Yi, J.Bohlen, D.Letzig, I.Hurtado, M.T.Pe'rez-Prado: Acta Mater.59 (2011) 6949. 10.1016/j.actamat.2011.07.047 Search in Google Scholar

[29] Q.Z.Li: Mater. Sci. Eng. A568 (2013) 96. 10.1016/j.msea.2013.01.028 Search in Google Scholar

[30] N.V.Dudamell, I.Ulacia, F.Gálvez, S.Yi, J.Bohlen, D.Letzig, I.Hurtado, M.T.Pérez-Prado: Mater. Sci. Eng. A532 (2012) 528. 10.1016/j.msea.2011.11.018 Search in Google Scholar

Received: 2017-01-18
Accepted: 2017-03-28
Published Online: 2017-07-05
Published in Print: 2017-07-14

© 2017, Carl Hanser Verlag, München