Accessible Requires Authentication Published by De Gruyter July 5, 2017

ZnO whiskers synthesized by rapid microwave reduction reaction

Baoyan Liang, Yanxiang Feng and Wangxi Zhang

Abstract

ZnO whiskers were rapidly microwave synthesized from micron ZnO powder with Ti reducing agent. The compositions and microstructures of the products were studied using X-ray diffraction, scanning electron microscopy, and energy dispersive X-ray spectroscopy. Results showed that white flocculent ZnO powder began forming at 600 °C and increased in amount with increasing temperature. In the sample obtained at 800 °C, the tetrapod ZnO whiskers had rod-like feet with lengths of 1.5–3 μm and diameters of approximately 0.2–0.5 μm. The reduction reaction was completed at 1 100°C. Coarser and irregularly shaped ZnO whiskers with thick roots and sharp tips formed at 1 100°C.


*Correspondence address, Dr. Wangxi Zhang, Materials & Chemical Engineering school, Zhongyuan University of Technology, Zhengzhou, 450007, P. R. China, Tel.: +8637169975740, Fax: +8637169975740, E-mail:

References

[1] D.C.Look: Mater. Sci. Eng. B80 (2001) 383. 10.1016/S0921-5107(00)00604-8 Search in Google Scholar

[2] Ü.Özgür, Y.Alivov, C.Liu, M.A.Reshchikov, S.Doğan, V.Avrutin, S.J.Cho, H.Morkoc: J. Appl. Phys.98 (2005) 041301. 10.1063/1.1992666 Search in Google Scholar

[3] A.Janotti, W.Van: Rep. Prog. Phys.72 (2009) 126501. 10.1088/0034-4885/72/12/126501 Search in Google Scholar

[4] J.Q.Hu, X.L.Ma, Z.Y.Xie, N.B.Wong, C.S.Lee, S.T.Lee: Chem. Phys. Lett.344 (2001) 97. 10.1016/S0009-2614(01)00720-5 Search in Google Scholar

[5] G.H.Lee: Ceram. Inter.37 (2011) 189. 10.1016/j.ceramint.2010.09.025 Search in Google Scholar

[6] X.M.Sun, X.Chen, Z.X.Deng, Y.D.Li: Mater. Chem. Phys.78 (2003) 99. 10.1016/S0254-0584(02)00310-3 Search in Google Scholar

[7] S.P.Huang, Q.Xiao, H.Zhou, D.Wang, W.Jiang: J. Alloys Compd.486 (2009) L24. 10.1016/j.jallcom.2009.07.033 Search in Google Scholar

[8] B.M.Ataev, A.M.Bagamadova, V.V.Mamedov, A.K.Omaev: Mater. Sci. Eng. B65 (1999) 159. 10.1016/S0921-5107(99)00166-X Search in Google Scholar

[9] Y.W.Wang, L.D.Zhang, G.Z.Wang, X.S.Peng, Z.Q.Chu: J. Cryst. Growth234 (2002) 171. 10.1016/S0022-0248(01)01661-X Search in Google Scholar

[10] M.J.Zheng, L.D.Zhang, G.H.Li, W.Z.Shen: Chem. Phys. Lett.363 (2002) 123. 10.1016/S0009-2614(02)01106-5 Search in Google Scholar

[11] C.C.Hwang, C.S.Lin, G.P.Wang, C.H.Peng, S.L.Chung: J. Alloys Compd.467 (2009) 514. 10.1016/j.jallcom.2007.12.088 Search in Google Scholar

[12] J.S.Liu, J.M.Cao, Z.Q.Li, Z.Q.Ke, F.Xing: Acta Chim. Sinica65 (2007) 1476. 10.3321/j.issn:0567-7351.2007.15.013 Search in Google Scholar

[13] S.Padmanabhan, D.Ledwith, S.Pillai, D.Mccormack, J.Kelly: J. Mater. Chem.19 (2009) 9250. 10.1039/B912537J Search in Google Scholar

[14] F.Solis-Pomar, A.Jaramillo, J.Lopez-Villareal, C.Medina, D.Rojas, A.C.Mera, M.F.Meléndrezb, E.Pérez-Tijerina: Ceram. Inter.16 (2016) 18045. 10.1016/j.ceramint.2016.08.084 Search in Google Scholar

[15] A.H.Qusay, J.Zhou, G.Z.Liu, L.Wang: Ceram. Inter.42 (2016) 828. 10.1016/j.ceramint.2015.09.004 Search in Google Scholar

[16] H.D.Li, H.Lv, D.D.Sang, D.M.Li, B.Li, X.Y.Lv, G.T.Zhou: Chin. Phys. Lett.25 (2008) 3794. 10.1088/0256-307X/25/10/075 Search in Google Scholar

[17] S.Noothongkaew, S.Pukird, W.Sukkabot, B.Kasemporn, P.Songsiririttikul, K.S.An: Appl. Mech. Mater.328 (2013) 710. 10.4028/www.scientific.net/AMM.328.710 Search in Google Scholar

[18] H.D.Janga, S.K.Kim: Mater. Res. Bull.36 (2001) 627. 10.1016/S0025-5408(01)00552-9 Search in Google Scholar

[19] P.X.Gao, Z.L.Wang: J. Phys. Chem. B108 (2004) 7534. 10.1021/jp049657n Search in Google Scholar

[20] H.Y.Dang, J.Wang, S.S.Fan: Nanotechnology14 (2003) 738. 10.1088/0957-4484/14/7/308 Search in Google Scholar

Received: 2017-01-12
Accepted: 2017-03-28
Published Online: 2017-07-05
Published in Print: 2017-07-14

© 2017, Carl Hanser Verlag, München