Accessible Unlicensed Requires Authentication Published by De Gruyter July 5, 2017

Dependence of corrosion properties of AISI 304L stainless steel on the austenite grain size

Soheil Sabooni, Hamed Rashtchi, Abdoulmajid Eslami, Fathallah Karimzadeh, Mohammad Hossein Enayati, Keyvan Raeissi, Alfonso Hing Wan Ngan and Reihane Faghih Imani


The corrosion resistance of austenitic stainless steels is known to be hampered by the loss of chromium available for passive surface layer formation as a result of chromium carbide precipitation at austenite grain boundaries during annealing treatments. Although high-temperature annealing can promote carbide dissolution leading to better corrosion resistance, grain coarsening also results, which would lead to poorer mechanical properties. Processing methods to achieve both good corrosion resistance and mechanical properties are thus highly desirable for austenitic stainless steels. In the present study, we show that the corrosion resistance of AISI 304L stainless steel can be improved by grain refinement into the ultrafine-grained regime. Specifically, samples with different austenite grain sizes in the range of 0.65–12 μm were studied by potentiodynamic polarization and electrochemical impedance spectroscopy tests in a 3.5 wt.% NaCl solution. All samples showed a typical passive behavior with similar corrosion potential, but the corrosion current density decreased significantly with decreasing grain size. The results show that the sample with the finest grain size had the best corrosion resistance due to a higher resistance of the passive layer to pitting attacks. This study indicates that grain refinement which improves mechanical properties can also significantly improve the corrosion resistance of AISI 304L stainless steel.

*Correspondence address, Soheil Sabooni, Department of Materials Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran, Tel.: +98-3133915705, Fax: +98-3133912752, E-mail:


[1] J.R.Davis: ASM Specialty Handbook: Stainless Steel, ASM, Metals Park, OH, USA (1994).Search in Google Scholar

[2] K.H.Lo, C.H.Shek, J.K.L.Lai: Mater. Sci. Eng. R65 (2009) 39104. 10.1016/j.mser.2009.03.001Search in Google Scholar

[3] A. JohnSedriks: Corrosion of Stainless Steels, 2nd Ed., Wiley, Hoboken, N.J., USA (1996).Search in Google Scholar

[4] A.F.Candelaria, C.E.Pinedo: J. Mater. Sci. Lett.22 (2003) 11511553. 10.1023/A:1025179128333Search in Google Scholar

[5] L.P.Karjalainen, T.Taulavuori, M.Sellman, A.Kyröläinen: Steel. Res. Int.79 (2008) 404412. 10.1002/srin.200806146Search in Google Scholar

[6] S.Sabooni, F.Karimzadeh, M.H.Enayati, A.H.W.Ngan: Mater. Sci. Eng. A636 (2015) 221230. 10.1016/j.msea.2015.03.101Search in Google Scholar

[7] A.Momeni, S.M.Abbasi: J. Mater. Sci. Technol.27 (2011) 338343. 10.1016/S1005-0302(11)60071-6Search in Google Scholar

[8] R. NafarDehsorkhi, S.Sabooni, F.Karimzadeh, A.Rezaeian, M.H.Enayati: Mater. Des.64 (2014) 5662. 10.1016/j.matdes.2014.07.022Search in Google Scholar

[9] R.D.K.Misra, S.Nayak, S.A.Mali, J.S.Shah, M.C.Somani, L.P.Karjalainen: Metall. Mater. Trans. A40 (2009) 24982509. 10.1007/s11661-009-9920-3Search in Google Scholar

[10] K.D.Ralston, N.Birbilis: Corrosion6 (2010) 075005-1075005-13. 10.5006/1.3462912Search in Google Scholar

[11] V.Afshari, C.Dehghanian: Corros. Sci.51 (2009) 18441849. 10.1016/j.corsci.2009.05.015Search in Google Scholar

[12] C.T.Kwok, F.T.Cheng, H.C.Man, W.H.Ding: Mater. Lett.60 (2006) 24192422. 10.1016/j.matlet.2006.01.053Search in Google Scholar

[13] Z.J.Zheng, Y.Gao, Y.Gui, M.Zhu: Corros. Sci.54 (2012) 6067. 10.1016/j.corsci.2011.08.049Search in Google Scholar

[14] S.X.Li, Y.N.He, S.R.Yu, P.Y.Zhang: Corros. Sci.66 (2013) 211216. 10.1016/j.corsci.2012.09.022Search in Google Scholar

[15] W.Ye, Y.Li, F.Wang: Electrochim. Acta51 (2006) 44264432. 10.1016/j.electacta.2005.12.034Search in Google Scholar

[16] S.Sabooni, F.Karimzadeh, M.H.Enayati: J. Mater. Eng. Perform.23 (2014) 16651672. 10.1007/s11665-014-0924-9Search in Google Scholar

[17] I.S.Lee, E.E.Stansbury, S.J.Pawel: Corrosion45 (1989) 134136. 10.5006/1.3577830Search in Google Scholar

[18] M.Shirdel, H.Mirzadeh, M.H.Parsa: Mater. Charact.103 (2015) 150161. 10.1016/j.matchar.2015.03.031Search in Google Scholar

[19] Y.F.Shen, X.X.Li, X.Sun, Y.D.Wang, L.Zuo: Mater. Sci. Eng. A552 (2012) 514522. 10.1016/j.msea.2012.05.080Search in Google Scholar

[20] Q.X.Dai, A.D.Wang, X.N.Cheng, X.M.Luo: Chin. Phys.11 (2002) 596598. 10.1088/1009-1963/11/6/315Search in Google Scholar

[21] S.Takaki, K.Tamimura, S.Ueda: ISIJ Int.34 (1994) 522527. 10.2355/isijinternational.34.522Search in Google Scholar

[22] L.M.Liu, ZWang: G. Song: Surf. Eng.26 (2010) 399406. 10.1179/174329409X409459Search in Google Scholar

[23] A. AbbasiAghuy, M.Zakeri, M.H.Moayed, M.Mazinani: Corros. Sci.94 (2015) 368376. 10.1016/j.corsci.2015.02.024Search in Google Scholar

[24] M.G.Fontana: Corrosion Engineering, McGraw-Hill, New York, USA (2005).Search in Google Scholar

[25] R.Singh, S.G.Chowdhury, I.Chattoraj: Metall. Mater. Trans. A36 (2008) 25042512. 10.1007/s11661-008-9597-zSearch in Google Scholar

[26] K.Elayaperumal, P.K.De, J.Balachandra: Corrosion28 (1972) 269273. 10.5006/0010-9312-28.7.269Search in Google Scholar

[27] A.S.Hamada, L.P.Karjalainen, M.C.Somani: Mater. Sci. Eng. A431 (2006) 211217. 10.1016/j.msea.2006.05.138Search in Google Scholar

[28] B.Y.Chang, S.M.Park: Annu. Rev. Anal. Chem.3 (2010) 207229. PMid: 20636040; 10.1146/annurev.anchem.012809.102211Search in Google Scholar

[29] B.Hadzima, M.Janeček, Y.Estrin, H.S.Kim: Mater. Sci. Eng. A462 (2007) 243247. 10.1016/j.msea.2005.11.081Search in Google Scholar

[30] X.Y.Wang, D.Y.Li: Electrochim. Acta47 (2002) 39393947. 10.1016/S0013-4686(02)00365-1Search in Google Scholar

Received: 2016-10-28
Accepted: 2017-03-20
Published Online: 2017-07-05
Published in Print: 2017-07-14

© 2017, Carl Hanser Verlag, München