Accessible Requires Authentication Published by De Gruyter July 5, 2017

Simulation of directional solidification furnace with bottom opening insulation to grow quality mc-Si ingot for PV applications

Somi Ganesan Nagarajan, Manickam Srinivasan, Karuppanan Aravinth and Perumalsamy Ramasamy

Abstract

2D axi-symmetric transient simulation based on the thermo-plastic model was carried out for analyzing the thermal field of directional solidification (DS) furnaces during the solidification process. The simulation was carried out for two different furnaces: One conventional DS furnace and the other a modified DS furnace. In the modified DS furnace the bottom insulation was provided with a circular shape opening. The simulation was performed for conventional and modified furnaces which suggest that the lifting velocity of the side insulation in the conventional DS furnace significantly affects the solidification process of mc-Si ingot and the opening speed of the bottom insulation in the modified DS furnace has less influence on solidification and also gives optimal conditions to grow good quality mc-Si ingots. The results for conventional and modified DS grown mc-Si ingots were taken with two different insulation lifting profiles and their influence on thermally induced stress, dislocation density and growth rate were compared and analyzed.


*Correspondence address, Prof. P. Ramasamy, Director, SSN Research Centre, SSN College of Engineering, Kalavakkam – 603 110, Chennai, Tamilnadu, India, Tel.: +914427469700, Mobile: +919283105760, Fax: +914427475166, E-mail:

References

[1] E.Klugmann-Radziemska, P.Ostrowski, K.Drabczyk, P.Panek, M.Szkodo: Sol. Energy Mater. Sol. Cells94 (2010) 22752282. 10.1016@j.solmat.2010.07.025 Search in Google Scholar

[2] A.Muller, K.Wambach, E.Alsema: 20th European Photovoltaic Solar Energy Conference, 6 – 10 June 2005, Barcelona, Spain. Search in Google Scholar

[3] B.Gao, S.Nakano, H.Harada, Y.Miyamura, T.Sekiguchi, K.Kakimoto: J. Cryst. Growth352 (2012) 4752. 10.1016/j.jcrysgro.2011.11.084 Search in Google Scholar

[4] B.Sopory, P.Rupnowski, V.Mehta, V.Budhraja, S.Johnston, N.Call, H.Moulinho, M.Al-Jassim: Conference paper NRWL/CP-520-45012, February 2009. Search in Google Scholar

[5] X.J.Chen, S.Nakono, L.Liu, K.Kakimoto: Reports of Research Institute for Applied Mechanics, No. 135, Kyushu University, Japan (2008) 4552. Search in Google Scholar

[6] T.Luo, G.Lv, W.Ma, K.Wei, X.Yang, S.Li: J. Cryst. Growth384 (2013) 122128. 10.1016/j/jcrysgro.2013.09.020 Search in Google Scholar

[7] X.Yang, W.Ma, G.Lv, K.Wei, T.Luo, D.Chen: J. Cryst. Growth400 (2014) 714. 10.1016/j.jcrysgro.2014.04.025 Search in Google Scholar

[8] X.J.Chen, S.Nakano, L.J.Liu, K.Kakimoto: J. Cryst. Growth310 (2008) 43304335. 10.1016/j.jcrysgro.2008.07.027 Search in Google Scholar

[9] L.Chen, B.Dai: J. Cryst. Growth354 (2012) 8692. 10.1016/j.jcrysgro.2012.06.010 Search in Google Scholar

[10] H.S.Fang, S.Wang, L.Zhou, N.G.Zhou, M.H.Lin: J. Cryst. Growth346 (2012) 511. 10.1016/j.jcrysgro.2012.02.032 Search in Google Scholar

[11] X.Qi, Q.Yu, W.Zhao, X.Liang, J.Zhang, L.Liu: Sol. Energy Mater. Sol. Cells130 (2014) 118123. 10.1016/j.solmat.2014.06.042 Search in Google Scholar

[12] O.V.Smirnova; V.V.Kalaev: J. Cryst. Growth303 (2007) 141. 10.1016/j.jcrysgro.2006.11.150 Search in Google Scholar

[13] J.Fainberg, H.-J.Leister: Comput. Methods Appl. Mech. Eng.137 (1996) 167174. 10.1016/s0045-7825(96)01063-8 Search in Google Scholar

[14] Z.Wu, G.Zhong, X.Zhou, Z.Zhang, Z.Wang, W.Chena, X.Huanga: J. Cryst. Growth441 (2016) 5863. 10.1016/j.jcrysgro.2016.02.012 Search in Google Scholar

[15] Z.Wu, G.Zhong, Z.Zhang, X.Zhou, Z.Wang, X.Huang: J. Cryst. Growth426 (2015) 110116. 10.1016/j.jcrysgro.2015.05.021 Search in Google Scholar

[16] L.Zheng, X.Ma, D.Hu, H.Zhang, T.Zhang, Y.Wan: J. Cryst. Growth318 (2011) 313317. 10.1016/j.jcrysgro.2010.11.141 Search in Google Scholar

Received: 2016-12-17
Accepted: 2017-02-21
Published Online: 2017-07-05
Published in Print: 2017-07-14

© 2017, Carl Hanser Verlag, München