Accessible Requires Authentication Published by De Gruyter July 5, 2017

Synthesis of binary bismuth–cadmium oxide nanorods with sensitive electrochemical sensing performance

Yong Wen, Lizhai Pei and Tian Wei

Abstract

Binary bismuth–cadmium oxide nanorods have been synthesized by a simple hydrothermal process without templates and additives. X-ray diffraction and high-resolution transmission electron microscopy reveal that the nanorods possess single crystalline tetragonal Bi2CdO4 phase. Scanning electron microscopy and transmission electron microscopy images show that the length and diameter of the nanorods are 20–300 nm and 5–10 μm, respectively. The formation of the binary bismuth–cadmium oxide nanorods is closely related to the hydrothermal parameters. The electrochemical sensing performance of the binary bismuth–cadmium oxide nanorods has been investigated using the nanorods as glassy carbon electrode modifiers. The detection limit is 0.19 μM with a linear range of 0.0005–2 mM. The nanorod-modified glassy carbon electrode exhibits good electrocatalytic activity toward L-cysteine and great application potential for electrochemical sensors.


*Correspondence address, Mr. Yong Wen, School of Civil Engineering and Architecture, Xinjiang University, Urumchi, P. R. China, Tel.: +869914210108, Fax: +869914210108, E-mail: ,

References

[1] L.Li, Y.Yang, G.Li, L.Zhang: Small2 (2006) 548. 10.1002/smll.200500382 Search in Google Scholar

[2] Y.F.Qiu, M.L.Yang, H.B.Fan, Y.Z.Zuo, Y.Y.Shao, Y.J.Xu, X.X.Yang, S.H.Yang: CrystEngComm13 (2011) 1843. 10.1039/C0CE00508H Search in Google Scholar

[3] L.Wang, X.H.Wang, L.X.Chen, C.P.Chen, X.Z.Xiao, L.H.Gao, Q.D.Wang: J. Alloys Compd.416 (2006) 194. 10.1016/j.jallcom.2005.08.030 Search in Google Scholar

[4] M.L.Guan, D.K.Ma, S.W.Hu, Y.J.Chen, S.M.Huang: Inorg. Chem.50 (2011) 800. PMid: 21171642; 10.1021/ic101961z Search in Google Scholar

[5] H.Su, S.L.Cao, N.N.Xia, X.J.Huang, J.Yan, Q.Y.Liang, D.S.Yuan: J. Appl. Electrochem.44 (2014) 735. 10.1007/s10800-014-0681-3 Search in Google Scholar

[6] S.J.E.Carlsson, M.Azuma, Y.Shimakawa, M.Takano, A.Hewat, J.P.Attfield: J. Solid State Chem.181 (2008) 611. 10.1016/j.jssc.2007.12.037 Search in Google Scholar

[7] K.Park, J.W.Choi, S.J.Kim, G.H.Kim, Y.S.Cho: J. Alloys Compd.485 (2009) 532. 10.1016/j.jallcom.2009.05.106 Search in Google Scholar

[8] L.Z.Pei, T.Wei, N.Lin, H.Zhang: J. Alloys Compd.663 (2016) 677. 10.1016/j.jallcom.2015.12.177 Search in Google Scholar

[9] L.Z.Pei, T.Wei, N.Lin, Z.Y.Cai, C.G.Fan, Z.Yang: J. Electrochem. Soc.163 (2016) H1. 10.1149/2.0041602jes Search in Google Scholar

[10] Y.Dong, J.B.Zheng: J. Mol. Liq.196 (2014) 280. 10.1016/j.molliq.2014.03.009 Search in Google Scholar

[11] J.A.Reynaud, B.Maltoy, P.J.Canessan: Electroanal. Chem.114 (1980) 195. 10.1016/S0022-0728(80)80447-5 Search in Google Scholar

[12] L.Z.Pei, Y.Q.Pei, Y.K.Xie, C.G.Fan, H.Y.Yu: CrystEngComm15 (2013) 1729. 10.1039/C2CE26592C Search in Google Scholar

[13] M.E.Johll, D.G.Williams, D.C.Hohnson: Electroanalysis9 (1997) 1397. 10.1002/elan.1140091805 Search in Google Scholar

[14] S.D.Kirik, A.F.Shimanskiy, T.I.Koryagina: Solid State Ionics122 (1999) 249. 10.1016/S01672738(98)004445 Search in Google Scholar

[15] L.W.Lin, Y.H.Tang, C.S.Chen, H.F.Xu: CrystEngComm12 (2010) 2975. 10.1039/B927384K Search in Google Scholar

[16] L.W.Lin, Y.H.Tang, C.S.Chen: Nanotechnology20 (2009) 175601. 10.1088/09574484/20/17/175601 Search in Google Scholar

[17] L.W.Lin, Y.H.He: CrystEngComm14 (2012) 3250. 10.1039/C2CE06338G Search in Google Scholar

[18] L.W.Lin, X.Y.Sun, Y.Jiang, Y.H.He: Nanoscale5 (2013) 12518. 10.1039/C3NR04185A Search in Google Scholar

[19] L.Z.Pei, Y.Yang, Y.Q.Pei, C.Z.Yuan, T.K.Duan, Q.F.Zhang: Cryst. Res. Technol.46 (2011) 480. 10.1002/crat.201100096 Search in Google Scholar

[20] L.L.Lan, Q.J.Li, G.R.Gu, H.F.Zhang, B.B.Liu: J. Alloys Compd.644 (2015) 430. 10.1016/j.jallcom.2015.05.078 Search in Google Scholar

[21] J.H.Yang, J.H.Zheng, H.J.Zhai, L.L.Yang: Cryst. Res. Technol.44 (2009) 87. 10.1002/crat.200800294 Search in Google Scholar

[22] Q.Liu, Y.Zhou, W.G.Tu, S.C.Yan, Z.G.Zou: Inorg. Chem.53 (2014) 359. 10.1021/ic402292a Search in Google Scholar

[23] F.F.Wang, Y.Xing, Z.M.Su, S.Y.Song: Mater. Res. Bull.48 (2013) 2654. 10.1016/j.materresbull.2013.03.036 Search in Google Scholar

[24] L.Z.Pei, S.Wang, Y.X.Jiang, Y.Li, Y.K.Xie, Y.H.Guo: CrystEngComm15 (2013) 7815. 10.1039/C3CE40989A Search in Google Scholar

[25] K.Zhao, G.F.Du, G.H.Qin, Y.J.Liu, H.Y.Zhao: Mater. Lett.141 (2015) 351. 10.1016/j.matlet.2014.11.074 Search in Google Scholar

[26] Z.N.Liu, H.C.Zhang, S.F.Hou, H.Y.Ma: Microchim. Acta177 (2012) 427. 10.1007/s00604-012-0801-x Search in Google Scholar

[27] F.G.Xu, F.Wang, D.G.Yang, Y.Gao, H.M.Li: Mater. Sci. Eng. C38 (2014) 292. PMid: 24656381; 10.1016/j.msec.2014.02.017 Search in Google Scholar

[28] C.Y.Deng, J.H.Chen, X.L.Chen, M.D.Wang, Z.Nie, S.Z.Yao: Electrochim. Acta54 (2009) 3298. 10.1016/j.electacta.2008.11.038 Search in Google Scholar

[29] S.Ge, M.Yan, J.Lu, M.Zhang, F.Yu, J.Yu, X.Song, S.Yu: Biosen. Bioelectron.31 (2012) 49. PMid: 22019101; 10.1016/j.bios.2011.09.038 Search in Google Scholar

[30] C.H.Xiao, J.H.Chen, B.Liu, X.C.Chu, L.Wu, S.Z.Yao: Phys. Chem. Chem. Phys.13 (2011) 1568. 10.1039/C0CP00980F Search in Google Scholar

[31] L.B.Qu, S.Yang, G.Li, R.Yang, J.Li, L.L.Yu: Electrochim. Acta56 (2011) 2934. 10.1016/j.electacta.2010.12.090 Search in Google Scholar

[32] M.L.Ye, B.Xu, W.D.Zhang: Microchim. Acta172 (2011) 439. 10.1007/s00604-010-0508-9 Search in Google Scholar

[33] L.Z.Pei, T.Wei, N.Lin, H.Zhang, C.G.Fan, Z.Yang: J. Alloys Compd.679 (2016) 39. 10.1149/2.0041602jes Search in Google Scholar

[34] X.J.Wang, C.N.Luo, L.L.Li, H.M.Duan: J. Electroanal. Chem.757 (2015) 100. 10.1016/j.jelechem.2015.09.023 Search in Google Scholar

[35] Y.P.Dong, L.Z.Pei, X.F.Chu, W.B.Zhang, Q.F.Zhang: Electrochim. Acta55 (2010) 5135. 10.1016/j.electacta.2009.11.042 Search in Google Scholar

[36] G.Ziyatdinova, L.Grigor'eva, M.Morozov, A.Gilmutdinov, H.Budnikov: Microchim. Acta165 (2009) 359. 10.1007/s00604-009-0142-6 Search in Google Scholar

[37] M.Ahmad, C.F.Pan, J.Zhu: J. Mater. Chem.20 (2010) 7169. 10.1039/C0JM01055C Search in Google Scholar

[38] X.F.Tang, Y.Liu, H.Q.Hou, T.Y.You: Talanta80 (2010) 2182. PMid: 20152470; 10.1016/j.talanta.2009.11.027 Search in Google Scholar

[39] N.Spataru, B.V.Sarada, E.Papa, D.A.Tryk, A.Fujishima: Anal. Chem.73 (2001) 514. PMid: 11217755; 10.1021/ac000220v Search in Google Scholar

[40] P.Dharmapandian, S.Rajesh, S.Rajasingh, A.Rajendran, C.Karunakaran: Sens. Actuators B148 (2010) 17. 10.1016/j.snb.2010.04.023 Search in Google Scholar

[41] Z.Chen, H.Zheng, C.Lu, Y.Zu: Langmuir23 (2007) 10816. 10.1021/la701667p Search in Google Scholar

[42] S.M.Chen, J.Y.Chen, R.Thangamuthu: Electroanalysis20 (2008) 1565. 10.1002/elan.200804213 Search in Google Scholar

[43] A.Salimi, R.Hallaj: Talanta66 (2005) 967. PMid: 18970079; 10.1016/j.talanta.2004.12.040 Search in Google Scholar

[44] S.D.Fei, J.H.Chen, S.Z.Yao, G.H.Deng, D.L.He, Y.F.Kuang: Anal. Biochem.339 (2005) 29. PMid: 15766706; 10.1016/j.ab.2005.01.002 Search in Google Scholar

[45] K.Mohsen, S.M.Rasoul, K.M.Hassan, A.Khadijeh: Chin. J. Catal.35 (2014) 1166. 10.1016/S1872-2067(14)60065-6 Search in Google Scholar

[46] A.E.Ali, D.T.Samira, K.M.Hassan: Anal. Sci.27 (2011) 409. 10.2116/analsci.27.409 Search in Google Scholar

Received: 2016-11-11
Accepted: 2017-04-24
Published Online: 2017-07-05
Published in Print: 2017-07-14

© 2017, Carl Hanser Verlag, München