Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter July 5, 2017

Improving the productivity and purity of vaterite produced via a refined bubbling method

Peiyuan Chen , Honghao Ma , Ying Xu and Zhaowu Shen


The bubbling method has been refined to produce vaterite with both high productivity and purity for its promising applications. This involves: a) adding an adequate amount of ammonia water to achieve maximum precipitation of Ca2+, b) refining CO2 bubble sizes into microns by a designed gas disperser, and c) using optimal final pH condition and CO2 flow rate to obtain vaterite with both high productivity and purity. In addition, the conservation of vaterite was also investigated by exposing vaterite to two moist environments. The results show that 95.1 % pure vaterite can be produced with 88.8 % yield at a final pH value of 8.6 and CO2 flow rate of 11 l min−1. The corresponding vaterite particles mostly have a hollow structure. The conservation of vaterite is very sensitive to moisture, and it transforms into calcite gradually depending on the moisture content.

*Correspondence address, Associate Professor Honghao Ma, CAS Key Laboratory of Mechanical Behavior and Design of Materials (LMBD), University of Science and Technology of China, Hefei 230027, P. R. China, Tel.: +86-17755131576, E-mail:


[1] L.Zhao, J.Wang: Colloids Surf. A393 (2012) 139. 10.1016/j.colsurfa.2011.11.012Search in Google Scholar

[2] G.Menéndez, V.Bonavetti, E.F.Irassar: Cem. Concr. Compos.25 (2003) 61. 10.1016/S0958-9465(01)00056-7Search in Google Scholar

[3] D.B.Trushina, T.V.Bukreeva, M.V.Kovalchuk, M.N.Antipina: Mater. Sci. Eng. C45 (2014) 644. PMid: 25491874; 10.1016/j.msec.2014.04.050Search in Google Scholar PubMed

[4] D.L.G.Rowlands, R.K.Webster: Nature229 (1971) 158. PMid: 16059132; 10.1038/physci229158a0Search in Google Scholar

[5] M.S.Rao: Bull. Chem. Soc. Jpn.46 (1973) 1414. 10.1246/bcsj.46.1414Search in Google Scholar

[6] Y.Wang, Y.X.Moo, C.Chen, P.Gunawan, R.Xu: J. Colloid Interface Sci.352 (2010) 393. 10.1016/j.jcis.2010.08.060Search in Google Scholar PubMed

[7] H.Watanabe, Y.Mizuno, T.Endo, X.Wang, M.Fuji, M.Takahashi: Adv. Powder Technol.20 (2009) 89. 10.1016/j.apt.2008.10.004Search in Google Scholar

[8] Y.S.Han, G.Hadiko, M.Fuji, M.Takahashi: J. Cryst. Growth276 (2005) 541. 10.1016/j.jcrysgro.2004.11.408Search in Google Scholar

[9] Y.S.Han, G.Hadiko, M.Fuji, M.Takahashi: J. Cryst. Growth289 (2006) 269. 10.1016/j.jcrysgro.2005.11.011Search in Google Scholar

[10] I.Udrea, C.Capat, E.A.Olaru, R.Isopescu, M.Mihai, C.D.Mateescu, C.Bradu: Ind. Eng. Chem. Res.51 (2012) 8185. 10.1021/ie202221mSearch in Google Scholar

[11] D.Zhao, J.Jiang, J.Xu, L.Yang, T.Song, P.Zhang: Mater. Lett.104 (2013) 28. 10.1016/j.matlet.2013.04.018Search in Google Scholar

[12] G.Hadiko, Y.S.Han, M.Fuji, M.Takahashi: Mater. Lett.59 (2005) 2519. 10.1016/j.matlet.2005.03.036Search in Google Scholar

[13] T.Tomioka, M.Fuji, M.Takahashi, C.Takai, M.Utsuno: Cryst. Growth Des.12 (2012) 771. 10.1021/cg201103zSearch in Google Scholar

[14] S.Yu, X.Wang, D.Wu: Energy Fuels28 (2014) 3519. 10.1021/ef5005539Search in Google Scholar

[15] M.Fujiwara, K.Shiokawa, M.Araki, N.Ashitaka, K.Morigaki, T.Kubota, Y.Nakahara: Cryst. Growth Des.10 (2010) 4030. 10.1021/cg100631vSearch in Google Scholar

[16] U.Maver, M.Bele, J.Jamnik, M.Gaberšček, O.Planinšek: Mater. Res. Bull.48 (2013) 137. 10.1016/j.materresbull.2012.10.021Search in Google Scholar

[17] M.Fujiwara, K.Shiokawa, K.Hayashi, K.Morigaki, Y.Nakahara: J. Biomed. Mater. Res.81 A (2007) 103. PMid: 17109429; 10.1002/jbm.a.31021Search in Google Scholar PubMed

[18] J.Saikia, G.Das: J. Environ. Chem. Eng.2 (2014) 1165. 10.1016/j.jece.2014.04.016Search in Google Scholar

[19] K.Y.Chong, C.H.Chia, S.Zakaria, M.S.Sajab: J. Environ. Chem. Eng.2 (2014) 2156. 10.1016/j.jece.2014.09.017Search in Google Scholar

[20] I.Chen, T.P.Lee, J.Patterson: Concrete compositions and methods. US Patent: us9061940 (2015).Search in Google Scholar

[21] J.D.Rodriguez-Blanco, S.Shaw, L.G.Benning: Nanoscale3 (2011) 265. PMid: 21069231; 10.1039/c0nr00589dSearch in Google Scholar PubMed

[22] J.D.Rodriguez-Blanco, S.Shaw, P.Bots, T.Roncal-Herrero, L.G.Benning: J. Alloys Compd.536 (2012) S477. 10.1016/j.jallcom.2011.11.057Search in Google Scholar

[23] A.V.Radha, T.Z.Forbes, C.E.Killian, P.U.P.A.Gilbert, A.Navrotsky: Proc. Natl. Acad. Sci. USA107 (2010) 16438. PMid: 20810918; 10.1073/pnas.1009959107Search in Google Scholar

[24] N.Wada, K.Yamashita, T.Umegaki: J. Cryst. Growth148 (1995) 297. 10.1016/0022-0248(94)00880-9Search in Google Scholar

[25] A.Szcześ, E.Chibowski, L.Hołysz: Colloids Surf. A297 (2007) 14. 10.1016/j.colsurfa.2006.10.014Search in Google Scholar

[26] Y.Mori, T.Enomae, A.Isogai: Mater. Sci. Eng. C29 (2009) 1409. 10.1016/j.msec.2008.11.009Search in Google Scholar

[27] P.Liang, Y.Zhao, Q.Shen, D.Wang, D.Xu: J. Cryst. Growth261 (2004) 571. 10.1016/j.jcrysgro.2003.03.001Search in Google Scholar

[28] P.Chen, J.Wang, L.Wang, Y.Xu, X.Qian, H.Ma: J. Cleaner Prod.149 (2017) 735. 10.1016/j.jclepro.2017.02.148Search in Google Scholar

[29] ASTM Subcommittee22.11: E 104 Standard practice for maintaining constant relative humidity by means of aqueous solutions, ASTM International, USA (2012). 10.1520/E0104-02R12Search in Google Scholar

[30] L.Xiang, Y.Xiang, Y.Wen, F.Wei: Mater. Lett.58 (2004) 959. 10.1016/j.matlet.2003.07.034Search in Google Scholar

[31] W.L.Noorduin, E.Vlieg, R.M.Kellogg, B.Kaptein: Angew. Chem. Int. Ed.48 (2009) 9600. PMid: 19431167; 10.1002/anie.200905215Search in Google Scholar PubMed

Received: 2017-01-24
Accepted: 2017-04-24
Published Online: 2017-07-05
Published in Print: 2017-07-14

© 2017, Carl Hanser Verlag, München

Downloaded on 6.12.2022 from
Scroll Up Arrow