Accessible Requires Authentication Published by De Gruyter July 5, 2017

Improving the productivity and purity of vaterite produced via a refined bubbling method

Peiyuan Chen, Honghao Ma, Ying Xu and Zhaowu Shen

Abstract

The bubbling method has been refined to produce vaterite with both high productivity and purity for its promising applications. This involves: a) adding an adequate amount of ammonia water to achieve maximum precipitation of Ca2+, b) refining CO2 bubble sizes into microns by a designed gas disperser, and c) using optimal final pH condition and CO2 flow rate to obtain vaterite with both high productivity and purity. In addition, the conservation of vaterite was also investigated by exposing vaterite to two moist environments. The results show that 95.1 % pure vaterite can be produced with 88.8 % yield at a final pH value of 8.6 and CO2 flow rate of 11 l min−1. The corresponding vaterite particles mostly have a hollow structure. The conservation of vaterite is very sensitive to moisture, and it transforms into calcite gradually depending on the moisture content.


*Correspondence address, Associate Professor Honghao Ma, CAS Key Laboratory of Mechanical Behavior and Design of Materials (LMBD), University of Science and Technology of China, Hefei 230027, P. R. China, Tel.: +86-17755131576, E-mail:

References

[1] L.Zhao, J.Wang: Colloids Surf. A393 (2012) 139. 10.1016/j.colsurfa.2011.11.012 Search in Google Scholar

[2] G.Menéndez, V.Bonavetti, E.F.Irassar: Cem. Concr. Compos.25 (2003) 61. 10.1016/S0958-9465(01)00056-7 Search in Google Scholar

[3] D.B.Trushina, T.V.Bukreeva, M.V.Kovalchuk, M.N.Antipina: Mater. Sci. Eng. C45 (2014) 644. PMid: 25491874; 10.1016/j.msec.2014.04.050 Search in Google Scholar

[4] D.L.G.Rowlands, R.K.Webster: Nature229 (1971) 158. PMid: 16059132; 10.1038/physci229158a0 Search in Google Scholar

[5] M.S.Rao: Bull. Chem. Soc. Jpn.46 (1973) 1414. 10.1246/bcsj.46.1414 Search in Google Scholar

[6] Y.Wang, Y.X.Moo, C.Chen, P.Gunawan, R.Xu: J. Colloid Interface Sci.352 (2010) 393. 10.1016/j.jcis.2010.08.060 Search in Google Scholar

[7] H.Watanabe, Y.Mizuno, T.Endo, X.Wang, M.Fuji, M.Takahashi: Adv. Powder Technol.20 (2009) 89. 10.1016/j.apt.2008.10.004 Search in Google Scholar

[8] Y.S.Han, G.Hadiko, M.Fuji, M.Takahashi: J. Cryst. Growth276 (2005) 541. 10.1016/j.jcrysgro.2004.11.408 Search in Google Scholar

[9] Y.S.Han, G.Hadiko, M.Fuji, M.Takahashi: J. Cryst. Growth289 (2006) 269. 10.1016/j.jcrysgro.2005.11.011 Search in Google Scholar

[10] I.Udrea, C.Capat, E.A.Olaru, R.Isopescu, M.Mihai, C.D.Mateescu, C.Bradu: Ind. Eng. Chem. Res.51 (2012) 8185. 10.1021/ie202221m Search in Google Scholar

[11] D.Zhao, J.Jiang, J.Xu, L.Yang, T.Song, P.Zhang: Mater. Lett.104 (2013) 28. 10.1016/j.matlet.2013.04.018 Search in Google Scholar

[12] G.Hadiko, Y.S.Han, M.Fuji, M.Takahashi: Mater. Lett.59 (2005) 2519. 10.1016/j.matlet.2005.03.036 Search in Google Scholar

[13] T.Tomioka, M.Fuji, M.Takahashi, C.Takai, M.Utsuno: Cryst. Growth Des.12 (2012) 771. 10.1021/cg201103z Search in Google Scholar

[14] S.Yu, X.Wang, D.Wu: Energy Fuels28 (2014) 3519. 10.1021/ef5005539 Search in Google Scholar

[15] M.Fujiwara, K.Shiokawa, M.Araki, N.Ashitaka, K.Morigaki, T.Kubota, Y.Nakahara: Cryst. Growth Des.10 (2010) 4030. 10.1021/cg100631v Search in Google Scholar

[16] U.Maver, M.Bele, J.Jamnik, M.Gaberšček, O.Planinšek: Mater. Res. Bull.48 (2013) 137. 10.1016/j.materresbull.2012.10.021 Search in Google Scholar

[17] M.Fujiwara, K.Shiokawa, K.Hayashi, K.Morigaki, Y.Nakahara: J. Biomed. Mater. Res.81 A (2007) 103. PMid: 17109429; 10.1002/jbm.a.31021 Search in Google Scholar

[18] J.Saikia, G.Das: J. Environ. Chem. Eng.2 (2014) 1165. 10.1016/j.jece.2014.04.016 Search in Google Scholar

[19] K.Y.Chong, C.H.Chia, S.Zakaria, M.S.Sajab: J. Environ. Chem. Eng.2 (2014) 2156. 10.1016/j.jece.2014.09.017 Search in Google Scholar

[20] I.Chen, T.P.Lee, J.Patterson: Concrete compositions and methods. US Patent: us9061940 (2015). Search in Google Scholar

[21] J.D.Rodriguez-Blanco, S.Shaw, L.G.Benning: Nanoscale3 (2011) 265. PMid: 21069231; 10.1039/c0nr00589d Search in Google Scholar

[22] J.D.Rodriguez-Blanco, S.Shaw, P.Bots, T.Roncal-Herrero, L.G.Benning: J. Alloys Compd.536 (2012) S477. 10.1016/j.jallcom.2011.11.057 Search in Google Scholar

[23] A.V.Radha, T.Z.Forbes, C.E.Killian, P.U.P.A.Gilbert, A.Navrotsky: Proc. Natl. Acad. Sci. USA107 (2010) 16438. PMid: 20810918; 10.1073/pnas.1009959107 Search in Google Scholar

[24] N.Wada, K.Yamashita, T.Umegaki: J. Cryst. Growth148 (1995) 297. 10.1016/0022-0248(94)00880-9 Search in Google Scholar

[25] A.Szcześ, E.Chibowski, L.Hołysz: Colloids Surf. A297 (2007) 14. 10.1016/j.colsurfa.2006.10.014 Search in Google Scholar

[26] Y.Mori, T.Enomae, A.Isogai: Mater. Sci. Eng. C29 (2009) 1409. 10.1016/j.msec.2008.11.009 Search in Google Scholar

[27] P.Liang, Y.Zhao, Q.Shen, D.Wang, D.Xu: J. Cryst. Growth261 (2004) 571. 10.1016/j.jcrysgro.2003.03.001 Search in Google Scholar

[28] P.Chen, J.Wang, L.Wang, Y.Xu, X.Qian, H.Ma: J. Cleaner Prod.149 (2017) 735. 10.1016/j.jclepro.2017.02.148 Search in Google Scholar

[29] ASTM Subcommittee22.11: E 104 Standard practice for maintaining constant relative humidity by means of aqueous solutions, ASTM International, USA (2012). 10.1520/E0104-02R12 Search in Google Scholar

[30] L.Xiang, Y.Xiang, Y.Wen, F.Wei: Mater. Lett.58 (2004) 959. 10.1016/j.matlet.2003.07.034 Search in Google Scholar

[31] W.L.Noorduin, E.Vlieg, R.M.Kellogg, B.Kaptein: Angew. Chem. Int. Ed.48 (2009) 9600. PMid: 19431167; 10.1002/anie.200905215 Search in Google Scholar

Received: 2017-01-24
Accepted: 2017-04-24
Published Online: 2017-07-05
Published in Print: 2017-07-14

© 2017, Carl Hanser Verlag, München