Skip to content
BY 4.0 license Open Access Published by De Gruyter July 31, 2017

Current developments of biomedical porous Ti–Mo alloys

Yong-Hua Li , Fang Wang and Jian-Jun Li

Abstract

As a biomedical hard tissue implant candidate, porous Ti–Mo alloy has received considerable attention because of its special porous structure, appropriate Young's modulus and compressive strength as well as good corrosion resistance. As a bioactive coating, hydroxyapatite is commonly used to cover the surface of bioinert metallic prostheses due to its excellent biocompatibility, bone-like structure and composition. This article reviews the current developments and the relationships between the fabrication methods, porous structure, mechanical properties, bioactive surface modification and corrosion behavior of porous Ti–Mo alloy used for hard tissue implant application. Furthermore, the future research directions are discussed to optimize the porous structure and improve the properties of porous Ti–Mo alloys.


*Correspondence address, Prof. Yong-Hua Li, School of Materials Science and Engineering, Shenyang Ligong University, 6 Nanping Middle Street, Shenyang 110159, P.R. China, Tel.: +862424680841, Fax: +862424680809, E-mail:

References

[1] M.Geetha, A.K.Singh, R.Asokamani, A.K.Gogi: Prog. Mater. Sci.54 (2009) 397. 10.1016/j.pmatsci.2008.06.004Search in Google Scholar

[2] Y.Li, C.Yang, H.Zhao, S.Qu, X.Li, Y.Li: Materials7 (2014) 1709. 10.3390/ma7031709Search in Google Scholar

[3] M.Niinomi, M.Nakai, J.Hieda: Acta Biomater.8 (2012) 3888. PMid:22765961; 10.1016/j.actbio.2012.06.037Search in Google Scholar

[4] K.Wang: Mater. Sci. Eng. A213 (1996) 134. 10.1016/0921-5093(96)10243-4Search in Google Scholar

[5] W.Suchanek, M.Yoshimura: J. Mater. Res.13 (1998) 94. 10.1557/JMR.1998.0015Search in Google Scholar

[6] W.F.Ho, C.P.Ju, J.H.C.Lin: Biomaterials20 (1999) 2115. 10.1016/S0142-9612(99)00114-3Search in Google Scholar

[7] X.F.Zhao, M.Niinomi, M.Nakai, J.Hieda: Acta Biomater.8 (2012) 1990. 10.1016/j.actbio.2012.02.004Search in Google Scholar

[8] W.D.Zhang, Y.Liu, H.Wua, M.Song, T.Y.Zhang, X.D.Lan, T.H.Yao: Mater. Charact.106 (2015) 302. 10.1016/j.matchar.2015.06.008Search in Google Scholar

[9] J.Song, L.M.Wang, X.N.Zhang, X.G.Sun, H.Jiang, Z.G.Fan, C.Y.Xie, M.Wu: Trans. Nonferrous Met. Soc. China22 (2012) 1839. 10.1016/S1003-6326(11)61395-2Search in Google Scholar

[10] D.Mareci, R.Chelariu, G.Bolat, A.Cailean, V.Grancea, D.Sutiman, Trans. Nonferrous Met. Soc. China23 (2013) 3829. 10.1016/S1003-6326(13)62936-2Search in Google Scholar

[11] W.Simka, A.Krzakała, D.M.Korotin, I.S.Zhidkov, E.Z.Kurmaev, S.O.Cholakh, K.Kuna, G.Dercz, J.Michalska, K.Suchanek, T.Gorewoda: Electrochimica Acta96 (2013) 180. 10.1016/j.electacta.2013.02.102Search in Google Scholar

[12] G.Bolat, D.Mareci, R.Chelariu, J.Izquierdo, S.Gonzalez, R.M.Souto: Electrochimica Acta113 (2013) 470. 10.1016/j.electacta.2013.09.116Search in Google Scholar

[13] M.Yan, M.Qian, C.Kong, M.S.Dargusch: Acta Biomater.10 (2014) 1014. PMid:24200712; 10.1016/j.actbio.2013.10.034Search in Google Scholar

[14] N.Somsanith, T.S.N.S.Narayanan, Y.K.Kim, I.S.Park, T.S.Bae, M.H.Lee: Appl. Surf. Sci.356 (2015) 1117. 10.1016/j.apsusc.2015.08.181Search in Google Scholar

[15] Y.L.Zhou, D.M.Luo: J. Alloys Compd.509 (2011) 6267. 10.1016/j.jallcom.2011.03.045Search in Google Scholar

[16] N.T.C.Oliveira, G.Aleixo, R.Caram, A.C.Guastaldi: Mater. Sci. Eng. A, 452–453 (2007) 727. 10.1016/j.msea.2006.11.061Search in Google Scholar

[17] N.T.C.Oliveira, A.C.Guastaldi: Corros. Sci.50 (2008) 938. 10.1016/j.corsci.2007.09.009Search in Google Scholar

[18] K.V.Rajagopalan: Annu. Rev. Nutr.8 (1988) 401. PMid:3060171; 10.1146/annurev.nu.08.070188.002153Search in Google Scholar

[19] A.M.Ribeiro, T.H.S.Flores-Sahagun, R.C.Paredes: J. Mater. Sci.51 (2016) 2806. 10.1007/s10853-015-9664-ySearch in Google Scholar

[20] G.Lewis, J. Mater. Sci: Mater. Med.24 (2013) 2293. PMid:23851927; 10.1007/s10856-013-4998-ySearch in Google Scholar

[21] X.J.Wang, S.Q.Xu, S.W.Zhou, W.Xu, M.Leary, P.Choong, M.Qian, M.Brandt, Y.M.Xie: Biomaterials83 (2016) 127. PMid:26773669; 10.1016/j.biomaterials.2016.01.012Search in Google Scholar

[22] Z.F.Gao, Q.Y.Li, F.He, Y.Huang, Y.Z.Wan: Mater. Design42 (2012) 13. 10.1016/j.matdes.2012.05.041Search in Google Scholar

[23] Y.H.Li, R.B.Chen, G.X.Qi, Z.T.Wang, Z.Y.Deng: J. Alloys Compd.485 (2009) 215. 10.1016/j.jallcom.2009.06.003Search in Google Scholar

[24] F.X.Xie, X.B.He, X.Lu, S.L.Cao, X.H.Qu: Mater. Sci. Eng. C33 (2013) 1085. PMid:23827546; 10.1016/j.msec.2012.11.037Search in Google Scholar

[25] F.X.Xie, X.M.He, Y.M.Lv, M.P.Wu, X.B.He, X.H.Qu: Corro. Sci.95 (2015) 117. 10.1016/j.corsci.2015.03.005Search in Google Scholar

[26] D.Yang, Z.Guo, H.Shao, X.Liu, Y.Ji: Procedia Eng.36 (2012) 160. 10.1016/j.proeng.2012.03.025Search in Google Scholar

[27] D.Yang, H.Shao, Z.Guo, T.Lin, L.Fan: Biomed. Mater.6 (2011) 045010. 10.1088/1748-6041/6/4/045010Search in Google Scholar

[28] R.Gilissen, J.P.Erauw, A.Smolders, E.Wansvijgenhoven, J. Luyten: Mater. Design.21 (2000) 251. 10.1016/S0261-3069(99)00075-8Search in Google Scholar

[29] L.J.Gibson: J. Biomech.18 (1985) 317. 10.1016/0021-9290(85)90287-8Search in Google Scholar

[30] Y.Bao, M.Zhang, Y.Liu, J.Yao, Z.Xiu, M.Xie, X.Sun: J. Porous Mater.21 (2014) 913. 10.1007/s10934-014-9837-0Search in Google Scholar

[31] S.Zhang, W.Li, Z.Zhang, L.Ma, J.Bai: Mater. Review (in Chinese)30 (2016) 42. 10.11896/j.issn.1005-023X.2016.02.010Search in Google Scholar

[32] G.Bolat, J.Izquierdo, T.Gloriant, R.Chelariu, D.Mareci, R.M.Souto: Corro. Sci.98 (2015) 170. 10.1016/j.corsci.2015.05.025Search in Google Scholar

Received: 2016-10-31
Accepted: 2017-05-30
Published Online: 2017-07-31
Published in Print: 2017-08-11

© 2017, Carl Hanser Verlag, München

This work is licensed under the Creative Commons Attribution 4.0 International License.

Downloaded on 29.1.2023 from https://www.degruyter.com/document/doi/10.3139/146.111526/html
Scroll Up Arrow