Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter September 4, 2017

Continuous cooling transformation behavior and the kinetics of bainite formation in a bainitic–martensitic steel

  • Babak Shahriari , Reza Vafaei , Ehsan Mohammad Sharifi and Khosro Farmanesh


The continuous cooling transformation diagram of a low carbon bainitic–martensitic steel was constructed using dilatometry and metallographic methods. It was found that as cooling rate increases, the structure changes from granular bainite to lath martensite. Three regions of different kinetic behavior were discerned for the bainitic–martensitic steel. One of the regions conformed to martensite formation and the other two comprised transformation to bainite. A non-isothermal type of Johnson–Mehl–Avrami–Kolmogorov kinetic equation of reaction rate was used to analyze the transformation behavior during continuous cooling of bainite formation. The Avrami exponent and activation energy values for different regions at cooling rates of 0.1 and 0.4 K s−1 varied from 1.5 to 4.7 and 71 to 84 kJ mol–1 respectively. Models obtained from such kinetic coefficients closely corresponded to experimental results.

*Correspondence address, Ehsan Mohammed Sharifi, Department of Materials Engineering, Malek Ashtar University of Technology, Ferdowsi Boulevard, Shahin Shahr + 115/83145, Iran, Tel.: ++983145912501, Fax: ++983145228530, E-mail: , Web:


[1] A.Saha, G.B.Olson: J. Comput. Aided Mater. Des.14 (2007) 177. 10.1007/s10820-006-9031-zSearch in Google Scholar

[2] A.Saha, J.Jung, G.B.Olson: J. Comput. Aided Mater. Des.14 (2007) 201. 10.1007/s10820-006-9032-ySearch in Google Scholar

[3] S.W.Thompson, G.Krauss: Metall. Mater. Trans. A27 (1996) 1573. 10.1007/BF02649816Search in Google Scholar

[4] E.J.Czyryca, R.E.Link, R.J.Wong, D.A.Aylor, T.W.Montemarano, J.P.Gudas: Nav. Eng. J.102 (1990) 63. 10.1111/j.1559-3584.1990.tb02632.xSearch in Google Scholar

[5] J.Chakraborty, D.Bhattacharjee, I.Manna: Scr. Mater.59 (2008) 247. 10.1016/j.scriptamat.2008.03.023Search in Google Scholar

[6] J.Chakraborty, D.Bhattacharjee, I.Manna: Scr. Mater.61 (2009) 604. 10.1016/j.scriptamat.2009.05.035Search in Google Scholar

[7] J.Chakraborty, P.Chattopadhyay, D.Bhattacharjee, I.Manna: Metall. Mater. Trans. A41 (2010) 2871. 10.1007/s11661-010-0288-1Search in Google Scholar

[8] J.Chakraborty, I.Manna: Mater. Sci. Eng. A548 (2012) 33. 10.1016/j.msea.2012.03.056Search in Google Scholar

[9] M.Venkatraman, O.N.Mohanty, R.N.Ghosh: Scand. J. Metall.30 (2001) 8. 10.1034/j.1600-0692.2001.300102.xSearch in Google Scholar

[10] M.Zhang, L.Li, R.Y.Fu, D.Krizan, B.C.De Cooman: Mater. Sci. Eng. A438–440 (2006) 296. 10.1016/j.msea.2006.01.128Search in Google Scholar

[11] A.N.Bhagat, S.K.Pabi, S.Ranganathan, O.N.Mohanty: Mater. Sci. Technol.23 (2007) 158. 10.1179/174328407X157218Search in Google Scholar

[12] B.M.Leister, J.N.DuPont: Mater. Sci. Technol.31 (2015) 1425. 10.1179/1743284714Y.0000000720Search in Google Scholar

[13] G.Altamirano-Guerrero, E.J.Gutiérrez-Castañeda, O.García-Rincón, A.Salinas-Rodríguez: MRS Proceedings1812 (2016) 129. 10.1557/opl.2016.29Search in Google Scholar

[14] M.E.Brown: Handbook of Thermal Analysis and Calorimetry: Principles and Practice, Elsevier Science, Amsterdam (1998). 10.1016/S1573-4374(98)80099-XSearch in Google Scholar

[15] R.Speyer: Thermal Analysis of Materials, Marcel Dekker, New York (1994). PMid:8120553Search in Google Scholar

[16] C. Garciade Andrés, F.G.Caballero, C.Capdevila, L.F.Álvarez: Mater. Charact.48 (2002) 101. 10.1016/S1044-5803(02)00259-0Search in Google Scholar

[17] A.Grajcar, W.Zalecki, P.Skrzypczyk, A.Kilarski, A.Kowalski, S.Kołodziej: J. Therm. Anal. Calorim.118 (2014) 739. 10.1007/s10973-014-4054-2Search in Google Scholar

[18] V.N.Urtsev, D.A.Mirzaev, I.L.Yakovleva, N.I.Vinogradova: The Physics of Metals and Metallography105 (2008) 477. 10.1134/s0031918x08050086Search in Google Scholar

[19] C.Li, X.Wang, X.He, C.Shang, Y.He: Mater. Sci. Forum654–656 (2010) 66. 10.4028/ in Google Scholar

[20] Q.Liu, W.Liu, X.Xiong: J. Mater. Res.27 (2012) 1060. 10.1557/jmr.2012.54Search in Google Scholar

[21] Q.Liu, C.Li, J.Gu, W.Liu: Philos. Mag.94 (2014) 306. 10.1080/14786435.2013.853137Search in Google Scholar

[22] T.Morimoto, F.Yoshida, Y.Kusumoto, A.Yanagida: ISIJ Int.52 (2012) 592. 10.2355/isijinternational.52.592Search in Google Scholar

[23] T.Abe, M.Kurihara, H.Tagawa, K.Tsukada: Transactions of the Iron and Steel Institute of Japan27 (1987) 478. 10.2355/isijinternational1966.27.478Search in Google Scholar

[24] X.Shi, W.Yan, W.Wang, Z.Yang, Y.Shan, K.Yang: ISIJ Int.56 (2016) 2284. 10.2355/isijinternational.ISIJINT-2016-286Search in Google Scholar

[25] D.Isheim, S.Vaynman, M.E.Fine, D.N.Seidman: Scr. Mater.59 (2008) 1235. 10.1016/j.scriptamat.2008.07.045Search in Google Scholar

[26] L.Ren, J.Zhu, L.Nan, K.Yang: Mater. & Des.32 (2011) 3980. 10.1016/j.matdes.2011.03.068Search in Google Scholar

[27] J.W.Bai, P.P.Liu, Y.M.Zhu, X.M.Li, C.Y.Chi, H.Y.Yu, X.S.Xie, Q.Zhan: Materi. Sci. and Eng A584 (2013) 57. 10.1016/j.msea.2013.06.082Search in Google Scholar

[28] T.Xi, M. BabarShahzad, D.Xu, J.Zhao, C.Yang, M.Qi, K.Yang: Mater. Sci. Eng. A675 (2016) 243. 10.1016/j.msea.2016.08.058Search in Google Scholar

[29] Y.F.Zheng, R.M.Wu, X.C.Li, X.C.Wu: Mater. Sci. Technol.33 (2017) 454. 10.1080/02670836.2016.1224608Search in Google Scholar

[30] J.-C.Zhao, M.R.Notis: Mater. Sci. Eng. R: Reports15 (1995) 135. 10.1016/0927-796X(95)00183-2Search in Google Scholar

[31] J.Yang, W.E.Wood, J.Dehaven, M.Li, in: R.A.Wallis, H.W.Walton (Eds.) Heat Treating: Proceedings of the 18th Conference, ASM International (1998) 476. PMid:11938909Search in Google Scholar

[32] Z.-Z.Yuan, X.-D.Chen, B.-X.Wang, Z.-J.Chen: J. Alloys Compd.399 (2005) 166. 10.1016/j.jallcom.2005.03.026Search in Google Scholar

[33] W.Sha: Mater. Sci. Technol.21 (2005) 69. 10.1179/174328405X14407Search in Google Scholar

[34] K.Biswas, S.Ram, L.Schultz, J.Eckert: J. Alloys Compd.397 (2005) 104. 10.1016/j.jallcom.2005.01.023Search in Google Scholar

[35] F.Liu, F.Sommer, C.Bos, E.J.Mittemeijer: Int. Mater. Rev.52 (2007) 193. 10.1179/174328007X160308Search in Google Scholar

[36] J.W.Christian: The Theory of Transformations in Metals and Alloy, Pergamon, London (2002) 529. 10.1016/b978-008044019-4/50016-7Search in Google Scholar

[37] Z.-m.Zhang, Q.-w.Cai, W.Yu, X.-l.Li, L.-d.Wang: Journal of Iron and Steel Research, International19 (2012) 73. 10.1016/S1006-706X(13)60035-7Search in Google Scholar

[38] K.Irvine, F.Pickering, W.Heselwood, M.Atkins: J. Iron. Steel Inst.186 (1957) 54.Search in Google Scholar

[39] J.ZHAO: Mater. Sci. Technol.8 (1992) 997. 10.1179/mst.1992.8.11.1004Search in Google Scholar

[40] I.Tamura: Steel Material Study on the Strength, Nikkan Kogyo Shinbun Ltd, Tokyo (1970).Search in Google Scholar

[41] J.H.Hollomon, L.D.Jaffe: Trans. AIME162 (1945) 223.Search in Google Scholar

[42] P.Thibaux, A.Métenier, C.Xhoffer: Metall. and Mater. Trans.A38 (2007) 1169. 10.1007/s11661-007-9150-5Search in Google Scholar

[43] A.K.Jena, M.C.Chaturvedi: Phase transformation in materials, Prentice Hall, New Jersey (1992).Search in Google Scholar

[44] R.P.Smith: Transactions of The Metallurgical Society of AIME230 (1964) 476.Search in Google Scholar

[45] C.A.Wert: Phys. Rev.79 (1950) 601. 10.1103/physrev.79.601Search in Google Scholar

[46] J.Ågren: Acta Metall.30 (1982) 841. 10.1016/0001-6160(82)90082-7Search in Google Scholar

[47] J.Ågren: Scr. Metall.20 (1986) 1507. 10.1016/0036-9748(86)90384-4Search in Google Scholar

[48] L.Fielding: Mater. Sci. Technol.29 (2013) 383. 10.1179/1743284712y.0000000157Search in Google Scholar

[49] M.Takahashi: Curr. Opin. Solid State Mater. Sci.8 (2004) 213. 10.1016/j.cossms.2004.08.003Search in Google Scholar

[50] M.D.Mulholland, D.N.Seidman: Acta Mater.59 (2011) 1881. 10.1016/j.actamat.2010.11.054Search in Google Scholar

Received: 2017-03-31
Accepted: 2017-05-29
Published Online: 2017-09-04
Published in Print: 2017-09-15

© 2017, Carl Hanser Verlag, München

Downloaded on 29.2.2024 from
Scroll to top button