Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter October 30, 2017

Ion transport and phase transformation in thin film intercalation electrodes

  • Fabian Wunde , Susann Nowak , Juliane Mürter , Efi Hadjixenophontos , Frank Berkemeier and Guido Schmitz


Thin film battery electrodes of the olivine structure LiFePO4 and the spinel phase LiMn2O4 are deposited through ion-beam sputtering. The intercalation kinetics is studied by cyclo-voltammetry using variation of the cycling rate over 4 to 5 orders of magnitude. The well-defined layer geometry allows a detailed quantitative analysis. It is shown that LiFePO4 clearly undergoes phase separation during intercalation, although the material is nano-confined and very high charging rates are applied. We present a modified Randles–Sevcik evaluation adapted to phase-separating systems. Both the charging current and the overpotential depend on the film thickness in a systematic way. The analysis yields evidence that the grain boundaries are important short circuit paths for fast transport. They increase the electrochemical active area with increasing layer thickness. Evidence is obtained that the grain boundaries in LiFePO4 have the character of an ion-conductor of vanishing electronic conductivity.

*Correspondence address, Prof. Dr. Dr. h.c. Guido Schmitz, Institute for Materials Science, University of Stuttgart, Heisenbergstr. 3, 70569 Stuttgart, Germany, Tel.: +49-711-685-61901, E-mail: , Web:


[1] T.Stockhoff, T.Gallasch, F.Berkemeier, G.Schmitz: Thin solid films520 (2012) 36683674. 10.1016/j.tsf.2011.12.065Search in Google Scholar

[2] F.Wunde, F.Berkemeier, G.Schmitz: J. Power Sources215 (2012) 109115. 10.1016/j.jpowsour.2012.04.102Search in Google Scholar

[3] M.Köhler, F.Berkemeier, T.Gallasch, G.Schmitz: J. Power Sources236 (2013) 6167. 10.1016/j.jpowsour.2013.02.043Search in Google Scholar

[4] S.Nowak, F.Berkemeier, G.Schmitz: J. Power Sources275 (2015). 144–150. 10.1016/j.jpowsour.2014.10.202Search in Google Scholar

[5] F.Berkemeier, T.Stockhoff, G.Schmitz: Acta Mater.80 (2014), 132140. 10.1016/j.actamat.2014.07.044Search in Google Scholar

[6] M.Muñoz-Castro, F.Berkemeier, G.Schmitz: Buchheit, H.-D. Wiemhöfer: J. Appl. Phys.120 (2016) 135106. 10.1063/1.4964254Search in Google Scholar

[7] J.Terwort, F.Berkemeier, G.Schmitz: J. Power Sources336 (2016) 172178. 10.1016/j.jpowsour.2016.10.073Search in Google Scholar

[8] S.Loos, D.Grunerl, M.Abdel-Hafiez, J.Seidel, R.Hüttl, A.Wolter, K.Bohmhammel, F.Mertens: J. Chem. Therm.85 (2015) 7785. 10.1016/j.jct.2015.01.007Search in Google Scholar

[9] D.M.Cupid, T.Lehmann, T.Bergfeldt, H.Berndt, H.J.Seifert: J. Mater. Sci.48 (2013) 33953403. 10.1007/s10853-012-7126-3Search in Google Scholar

[10] D.M.Cupid, D.Li, C.Gebert, A.Reif, H.Flandorfer, H.J.Seifert: J. Ceram. Soc. Jap.124 (2016), pp. 10721082. 10.2109/jcersj2.16116Search in Google Scholar

[11] D.M.Cupid, A.Reif, H.J.Seifert: Thermochim. Acta599 (2015) 3541. 10.1016/j.tca.2014.11.003Search in Google Scholar

[12] J.Fischer, D.Music, T.Bergfeldt, C.Ziebert, S.Ulrich, H.J.Seifert: Thin Solid Films572 (2014) 208215. 10.1016/j.tsf.2014.08.018Search in Google Scholar

[13] D.Albrecht, H.Wulfmeier, H.Fritze: Energy Technology4 (2016) 18. 10.1002/ente.201600117Search in Google Scholar

[14] M.M.Thackeray, P.J.Johnson, Picciotto, P.G.Bruce, J.B.Goodenough: Mater. Res. Bull.19 (1984) 179187. 10.1016/0025-5408(84)90088-6Search in Google Scholar

[15] A.Van der Ven, C.Marianetti, D.Morgan, G.Ceder: Solid State Ionics135 (2000) 2132. 10.1016/S0167-2738(00)00326-XSearch in Google Scholar

[16] J.B.Bates, N.J.Dudney, D.C.Lubben, G.R.Gruzalski, B.S.Kwak, X.Yu, R.A.Zuhr: J. Power Sources54 (1995) 5862. 10.1016/0378-7753(94)02040-ASearch in Google Scholar

[17] F.K.Shokoohi, J.M.Tarascon, B.J.Wilkens: Appl. Phys. Lett.59 (1991) 12601262. 10.1063/1.105470Search in Google Scholar

[18] J.Xie, T.Tanaka, N.Imanishi, T.Matsumura, A.Hirano, Y.Takeda, O.Yamamoto: J. Power Sources180 (2008) 576581. 10.1016/j.jpowsour.2008.02.049Search in Google Scholar

[19] C.Julien, E.Haro-Poniatowski, M.A.Camacho-Iopez, L.Escobar-Alarcon: Mater. Sci. Eng.72 (2000) 3646. 10.1016/S0921-5107(99)00598-XSearch in Google Scholar

[20] J.Xie, K.Kohno, T.Matsumura, N.Imanishi, A.Hirano, Y.Takeda, O.Yamamoto: Electrochim. Acta54 (2008) 376381. 10.1016/j.electacta.2008.07.067Search in Google Scholar

[21] M.Morcette, P.Barboux, J.Perrierere, T.Brousse, A.Traverse, J.P.Boliot: Solid State Ionics138 (2001) 213219. 10.1016/S0167-2738(00)00796-7Search in Google Scholar

[22] Z.Quan, S.Ohguchi, M.Kawase, H.Tanimura, N.Sonoyama: J. Power Sources244 (2013) 375381. 10.1016/j.jpowsour.2012.12.087Search in Google Scholar

[23] A.K.Padhi, K.S.Nanjundaswamy, J.B.Goodenough: J. Electrochem. Soc.144 (1997) 11881194. 10.1149/1.1837571Search in Google Scholar

[24] P.Bai, D.A.Cogswell, M.Z.Bazant: Nanoletters11 (2011) 48904896. PMid: 21985573 10.1021/nl202764fSearch in Google Scholar PubMed

[25] W.Weppner, R.A.Huggins: J. Electrochem. Soc.124 (1977) 15691578. 10.1149/1.2133112Search in Google Scholar

[26] N.Meethong, H.-Y.S.Huang, W.C.Carter, Y.M.Chiang: Electrochem. Solid-State Lett.10 (2007) A134A138. 10.1149/1.2710960Search in Google Scholar

[27] G.Chen, X.Song, T.J.Richardson: Electrochem. Solid-State Lett.9 (2006) A295A298. 10.1149/1.2192695Search in Google Scholar

[28] G.Alefeld: Ber. Bunsenges. Phys. Chem.76 (1972) 355,.Search in Google Scholar

[29] Y.Fukai: The Metal-Hydrogen System, (2nd Edition) Springer-Verlag, Berlin (2005) Sect. 2.10.1007/3-540-28883-XSearch in Google Scholar

[30] J.D.Eshelby, in F.Seitz, D.Turnbull (Eds.): Solid State Physics Vol. 3, Academic Press, New York (1956) 76.Search in Google Scholar

[31] F.Zhou, T.Maxisch, G.Ceder: Phys. Rev. Lett.97 (2006) 155704. 10.1103/PhysRevLett.97.155704Search in Google Scholar PubMed

[32] T.Ohzuku, K.Masaki, H.Taketsugu: J. Electrochem. Soc.137 (1990) 769775. 10.1149/1.2086552Search in Google Scholar

[33] A.van der Ven, K.Garikipati, S.Kim, M.Wagemaker: J. Electrochem. Soc.156 (2009) A949A957. 10.1149/1.3222746Search in Google Scholar

[34] T.Maxisch, G.Ceder: Phys. Rev. B73 (2006) 174112. 10.1103/PhysRevB.73.174112Search in Google Scholar

[35] J.Mürter: Production and characterization of LiMn2O4 thin film battery electrodes, Master thesis, Univ. of Stuttgart, Germany (2016).Search in Google Scholar

[36] J.E.B.Randles: Trans. Faraday Soc.44 (1948) 327338. 10.1039/TF9484400327Search in Google Scholar

[37] K.Aoiki, K.Tokuda, H.Matsuda: J. Electroanal. Chem.146 (1983) 417424. 10.1016/S0022-0728(83)80601-9Search in Google Scholar

[38] G.Martin: Phys. Rev. B: Condens. Matter41 (1990) 2279. 10.1103/PhysRevB.41.2279Search in Google Scholar

[39] Z.Erdelyi, D.L.Beke: Scr. Mater.49 (2003) 613617. 10.1016/S1359-6462(03)00353-1Search in Google Scholar

[40] F.Wunde: PhD Thesis, Atomare Transportprozesse in Dünnschichtelektroden für Lithium-Ionen-Batterien, Univ. of Münster, Germany (2015).Search in Google Scholar

Received: 2016-12-20
Accepted: 2017-05-22
Published Online: 2017-10-30
Published in Print: 2017-11-10

© 2017, Carl Hanser Verlag, München

Downloaded on 26.9.2023 from
Scroll to top button