Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter October 30, 2017

Thermodynamic characterization of lithium monosilicide (LiSi) by means of calorimetry and DFT-calculations

Franziska Taubert, Sebastian Schwalbe, Jürgen Seidel, Regina Hüttl, Thomas Gruber, Raphaël Janot, Matej Bobnar, Roman Gumeniuk, Florian Mertens and Jens Kortus


In this work we summarize a symbiotic approach to combine experimental and theoretical investigations for the derivation of high quality thermodynamic data for the description of potential lithium ion battery materials. The methodology of this concept was demonstrated in detail by exploring and describing the properties of the lithium monosilicide phase LiSi. The procedures were also applied in a series of investigations to all major LixSiy-phases which will be reviewed briefly. Regarding the LiSi phase, the measured and calculated isobaric heat capacity, which may enable further thermodynamic investigations (e. g. with CALPHAD method) of the phase diagram of the Li–Si-system is presented. The heat capacity of the stable phase LiSi was measured as a function of temperature in a range from (2 to 673) K and compared with corresponding ab-initio and molecular dynamic calculations resulting in values for absolute entropies. The heat of formation of the system was determined in an unconventional manner via hydrogenation experiments.

*Correspondence address, Florian Mertens, TU Berkakademie Freiberg, Leipziger Str. 29, 09599 Freiberg, Germany, E-mail:


[1] P.Wang, A.Kozlov, D.Thomas, F.Mertens, R.Schmid-Fetzer: Intermetallics42 (2013) 137145. 10.1016/j.intermet.2013.06.003Search in Google Scholar

[2] D.Thomas, M.Abdel-Hafiez, T.Gruber, R.Hüttl, J.Seidel, A.U.B.Wolter, B.Büchner, J.Kortus, F.Mertens: J. Chem. Thermodyn.64 (2013) 205225. 10.1016/j.jct.2013.05.018Search in Google Scholar

[3] T.Gruber, D.Thomas, C.Röder, F.Mertens, J.Kortus: J. Raman Spectrosc.44 (2013) 934938. 10.1002/jrs.4308Search in Google Scholar

[4] D.Thomas, M.Zeilinger, D.Gruner, R.Hüttl, J.Seidel, A.U.B.Wolter, T.F.Fässler, F.Mertens: J. Chem. Thermodyn.85 (2015) 178190. 10.1016/j.jct.2015.01.004Search in Google Scholar

[5] D.Thomas: PhD thesis, Thermodynamische und kinetische Untersuchungen im System Lithium-Silicium, TU Bergakademie Freiberg, Germany (2015).Search in Google Scholar

[6] T.Gruber: PhD thesis, Beschreibung der kristallinen Lithiumsilizid-Phasen auf Grundlage der Dichtefunktionaltheorie, TU Bergakademie Freiberg, Germany (2015).Search in Google Scholar

[7] T.Gruber, S.Bahmann, J.Kortus: Phys. Rev. B: Condens. Matter93 (2016) 144104. 10.1103/PhysRevB.93.144104Search in Google Scholar

[8] S.Schwalbe, T.Gruber, K.Trepte, F.Taubert, F.Mertens, J.Kortus: Comput. Mater. Sci.134 (2017) 4857. 10.1016/j.commatsci.2017.03.028Search in Google Scholar

[9] D.Ma, Z.Cao, A.Hu: Nano-Micro Lett.6 (2014) 347358. 10.1007/s40820-014-0008-2Search in Google Scholar PubMed PubMed Central

[10] M.Holzapfel, H.Buqa, L.J.Hardwick, M.Hahn, A.Würsig, W.Scheifele, P.Novák, R.Kötz, C.Veit, F.-M.Petrat: Electrochim. Acta52 (2006) 973978. 10.1016/j.electacta.2006.06.034Search in Google Scholar

[11] V.L.Chevrier, J.W.Zwanziger, J.R.Dahn: J. Alloys Compd.496 (2010) 2536. 10.1016/j.jallcom.2010.01.142Search in Google Scholar

[12] Z.Cui, F.Gao, Z.Cui, J.Qu: J. Power Sources207 (2012) 150159. 10.1016/j.jpowsour.2012.01.145Search in Google Scholar

[13] E.M.Pell: J. Phys. Chem. Solids3 (1957) 7781. 10.1016/0022-3697(57)90051-3Search in Google Scholar

[14] H.Böhm: Z. Metallkd.50 (1959) 4446.Search in Google Scholar

[15] I.Obinata, Y.Takeuchi, K.Kurihara, M.Watanabe: Metallurgy19 (1965) 2135.Search in Google Scholar

[16] R.A.Sharma, R.N.Seefurth: J. Electrochem. Soc.123 (1976) 17631768. 10.1149/1.2132692Search in Google Scholar

[17] S.-C.Lai: J. Electrochem. Soc.123 (1976) 1196. 10.1149/1.2133033Search in Google Scholar

[18] A.T.Dadd, P.Hubberstey: J. Chem. Soc., Faraday Trans. 177 (1981) 18651870. 10.1039/F19817701865Search in Google Scholar

[19] C.J.Wen, R.A.Huggins: J. Solid State Chem.37 (1981) 271278. 10.1016/0022-4596(81)90487-4Search in Google Scholar

[20] H.Okamoto: Bull. Alloy Phase Diagr.11 (1990) 306312. 10.1007/BF03029305Search in Google Scholar

[21] P.Hubberstey, A.T.Dadd: J. Nucl. Mater.123 (1984) 12311235. 10.1016/0022-3115(84)90245-9Search in Google Scholar

[22] M.H.Braga, L.F.Malheiros, I.Ansara: J. Phase Equilib.16 (1995) 324330. 10.1007/BF02645289Search in Google Scholar

[23] M.Zeilinger, D.Benson, U.Häussermann, T.F.Fässler: Chem. Mat.25 (2013) 19601967. 10.1021/cm400612kSearch in Google Scholar

[24] M.Zeilinger, I.M.Kurylyshyn, U.Häussermann, T.F.Fässler: Chem. Mat.25 (2013) 46234632. 10.1021/cm4029885Search in Google Scholar

[25] M.H.Braga, A.Debski, W.Gasior: J. Alloys Compd.616 (2014) 581593. 10.1016/j.jallcom.2014.06.212Search in Google Scholar

[26] S.Schmerler, J.Kortus: Phys. Rev. B: Condens. Matter89 (2014) 064109. 10.1103/PhysRevB.89.064109Search in Google Scholar

[27] T.Zienert, L.Amirkhanyan, J.Seidel, R.Wirnata, T.Weißbach, T.Gruber, O.Fabrichnaya, J.Kortus: Intermetallics77 (2016) 1422. 10.1016/j.intermet.2016.07.002Search in Google Scholar

[28] J.Evers, G.Oehlinger, G.Sextl: Angew. Chem.105 (1993) 15321534. 10.1002/ange.19931051036Search in Google Scholar

[29] J.Evers, G.Oehlinger, G.Sextl: Eur. J. Solid State Inorg. Chem.34 (1997) 773784. 10.1002/chin.199813026Search in Google Scholar

[30] W.S.Tang, J.-N.Chotard, R.Janot: J. Electrochem. Soc.160 (2013) A1232A1240. 10.1149/2.089308jesSearch in Google Scholar

[31] E.Menges, V.Hopf, H.Schäfer, A.Weiss: Z. Naturforsch. B24 (1969) 13511352. 10.1515/znb-1969-1034Search in Google Scholar

[32] L.A.Stearns, J.Gryko, J.Diefenbacher, G.K.Ramachandran, P.F.McMillan: J. Solid State Chem.173 (2003) 251258. 10.1016/S0022-4596(03)00045-8Search in Google Scholar

[33] H.Axel, H.Schäfer, A.Weiss: Z. Naturforsch. B21 (1966) 115117. 10.1515/znb-1966–0204Search in Google Scholar

[34] M.Abdel-Hafiez, S.Aswartham, S.Wurmehl, V.Grinenko, C.Hess, S.-L.Drechsler, S.Johnston, A.U.B.Wolter, B.Büchner, H.Rosner, L.Boeri: Phys. Rev. B: Condens. Matter85 (2012) 134533. 10.1103/PhysRevB.85.134533Search in Google Scholar

[35] Q.Shi, C.L.Snow, J.Boerio-Goates, B.F.Woodfield: J. Chem. Thermodyn.42 (2010) 11071115. 10.1016/j.jct.2010.04.008Search in Google Scholar

[36] M.W.ChaseJr.: NIST-JANAF thermochemical tables4th edition (Part I and II), J. Phys. Chem. Ref. Data 9 (1998).Search in Google Scholar

[37] E.W.Lemmon, M.L.Huber, D.G.Friend, C.Paulina: SAE International (2006). 10.4271/2006-01-0434Search in Google Scholar

[38] R.Hill: Proc. Phys. Soc. London, Sect. A65 (1952) 349. 10.1088/0370-1298/65/5/307Search in Google Scholar

[39] F.Birch: J. Geophys. Res.-Sol. Ea.83 (1978) 12571268. 10.1029/JB083iB03p01257Search in Google Scholar

[40] P.E.Blöchl: Phys. Rev. B: Condens. Matter50 (1994) 1795317979. 10.1103/PhysRevB.50.17953Search in Google Scholar

[41] P.Giannozzi, S.Baroni, N.Bonini, M.Calandra, R.Car, C.Cavazzoni, D.Ceresoli, G.L.Chiarotti, M.Cococcioni, I.Dabo, A.D.Corso, Gironcoli, S.Fabris, G.Fratesi, R.Gebauer, U.Gerstmann, C.Gougoussis, A.Kokalj, M.Lazzeri, L.Martin-Samos, N.Marzari, F.Mauri, R.Mazzarello, S.Paolini, A.Pasquarello, L.Paulatto, C.Sbraccia, S.Scandolo, G.Sclauzero, A.P.Seitsonen, A.Smogunov, P.Umari, R.M.Wentzcovitch: J. Phys.: Condens. Matter21 (2009) 395502. PMid: 21832390 10.1088/0953-8984/21/39/395502Search in Google Scholar

[42] N.A.W.Holzwarth, A.R.Tackett, G.E.Matthews: Comput. Phys. Commun.135 (2001) 329347. 10.1016/S0010-4655(00)00244-7Search in Google Scholar

[43] J.P.Perdew, Y.Wang: Phys. Rev. B: Condens. Matter45 (1992) 1324413249. 10.1103/PhysRevB.45.13244Search in Google Scholar

[44] R.Golesorkhtabar, P.Pavone, J.Spitaler, P.Puschnig, C.Draxl: Comput. Phys. Commun.184 (2013) 18611873. 10.1016/j.cpc.2013.03.010Search in Google Scholar

[45] A.Togo, I.Tanaka: Scr. Mater.108 (2015) 15. 10.1016/j.scriptamat.2015.07.021Search in Google Scholar

[46] M.T.Dove: Introduction to Lattice Dynamics, Cambridge University Press, Cambridge (1993). 10.1017/CBO9780511619885Search in Google Scholar

[47] M.T.Dove: Structure and Dynamics: An Atomic View of Materials, Oxford University Press, Oxford (2003).Search in Google Scholar

[48] S.Plimpton: J. Comput. Phys.117 (1995) 119. 10.1006/jcph.1995.1039Search in Google Scholar

[49] G.M.Gullet, G.Wagner, A.Slepoy: SANDIA Report SAND2003–8782 (2003).Search in Google Scholar

[50] L.T.Kong: Comput. Phys. Commun.182 (2011) 22012207. 10.1016/j.cpc.2011.04.019Search in Google Scholar

[51] L.T.Kong, L.J.Lewis: Phys. Rev. B: Condens. Matter77 (2008) 165422. 10.1103/PhysRevB.77.165422Search in Google Scholar

[52] S.-M.Liang, F.Taubert, A.Kozlov, J.Seidel, F.Mertens, R.Schmid-Fetzer: Intermetallics81 (2017) 3246. 10.1016/j.intermet.2017.02.024Search in Google Scholar

[53] A.Roine: HSC Chemistry 7.1. Software for Process simulation, Reactions Equations, Heat and Material Balances, Equilibrium Calculations, Electrochemical Cell Equilibriums, Eh-pH Diagrams – Pourbaix diagram, Pori (Finnland) (2011).Search in Google Scholar

[54] H.Kim, C.-Y.Chou, J.G.Ekerdt, G.S.Hwang: J. Phys. Chem.C115 (2011) 25142521. 10.1021/jp1083899Search in Google Scholar

[55] R.Nesper, H.G.von Schnering, J.Curda: Chem. Ber.119 (1986) 35763590. 10.1002/cber.19861191207Search in Google Scholar

[56] D.L.Martin: Proc. R. Soc. London, Ser. A263 (1961) 378386. 10.1098/rspa.1961.0167Search in Google Scholar

[57] P.D.Desai: J. Phys. Chem. Ref. Data15 (1986) 967983. 10.1063/1.555761Search in Google Scholar

Received: 2016-11-01
Accepted: 2017-04-25
Published Online: 2017-10-30
Published in Print: 2017-11-10

© 2017, Carl Hanser Verlag, München