Abstract
The effect of heat treatment and chromium contents (up to 9.1 wt.%) on the wear resistance of spheroidal carbide cast iron (9.5 wt.% V) was studied using optical and scanning electron microscopy, X-ray diffractometry, dilatometry and three-body abrasive testing. It was found that quenching from 760 °C and 920 °C improved the alloys’ wear resistance compared to the as-cast state due to the formation of metastable austenite transforming into martensite under abrasion. The wear characteristics of alloys studied are 1.6 – 2.3 times higher than that of reference cast iron (12 wt.% V) having stable austenitic matrix. Chromium addition decreases surface damage due to the formation of M7C3 carbides, while it reduces wear resistance owing to austenite stabilization to abrasion-induced martensite transformation. The superposition of these factors results in decreasing the alloys’ wear behaviour with chromium content increase.
References
[1] A.Bedolla-Jacuinde, F.V.Guerra, I.Mejía, J.Zuno-Silva, M.Rainforth: Wear332–333 (2015) 1006. 10.1016/j.wear.2015.01.049Search in Google Scholar
[2] M.Filipovic: Hemijska industrija68 (2014) 413. 10.2298/HEMIND130615064FSearch in Google Scholar
[3] M.Kawalec, E.Fras: ISIJ International48 (2008) 518. 10.2355/isijinternational.48.518Search in Google Scholar
[4] G.I.Sil'man: Met. Sci. Heat Treat.47 (2005) 343. 10.1007/s11041-005-0076-5Search in Google Scholar
[5] Y.Kawano, S.Nishiuchi, S.Yamamoto, S.Sugahara, T.Kikuchi: Patent US 6406563 B2.Search in Google Scholar
[6] M.Kawalec: Arch. Foundry Eng.3 (2011) 111.Search in Google Scholar
[7] T.Kitudo, M.Takemura, M.Matumuro, H.Matumoto, T.Horie, K.Shimizu: Patent US 6908589 B22005.Search in Google Scholar
[8] Y.Kawano, N.Shigenori, S.Kiyosuke, Y.Satoru: Journal of Japan Foundry Engineering Society71 (1999) 727. 10.11279/jfes.71.727Search in Google Scholar
[9] K.Tokaji, THorie, Y.Enomoto: J. Mater. Process. Technol.190 (2007) 81–88. 10.1016/j.jmatprotec.2007.03.103Search in Google Scholar
[10] V.G.Efremenko, K.Shimizu, A.P.Cheiliakh, T.V.Kozarevs'ka, Yu.G.Chabak, H.Hara, K.Kusumoto: J. Frict. Wear34 (2013) 466. 10.3103/S1068366613060068Search in Google Scholar
[11] Y.Uematsu, T.Kakiuchi, K.Tokaji, K.Nishigaki, M.Ogasawara: Mater. Sci. Eng.A 561 (2013) 386. 10.1016/j.msea.2012.10.045Search in Google Scholar
[12] K.Shimizu, T.Naruse, Y.Xinba, K.Kimura, K.Minami, H.Matsumoto: Wear267 (2009) 104. 10.1016/j.wear.2008.12.086Search in Google Scholar
[13] E.Fras, M.Kawalec, H.F.Lopez: Mater. Sci. Eng.A 524 (2009) 193. 10.1016/j.msea.2009.06.039Search in Google Scholar
[14] V.G.Efremenko, K.Shimizu, A.P.Cheiliakh, T.V.Pastukhova, Yu.G.Chabak, K.Kusumoto: Int. J. Miner., Metall. Mater.23 (2016) 645. 10.1007/s12613-016-1277-1Search in Google Scholar
[15] M.Takeda, M.Mitome, H.Hayakawa, S.Nishiuchi, T.Tanabe, S.Yamamoto: Mater. Sci. Technol.29 (2013) 672. 10.1179/1743284712Y.0000000170Search in Google Scholar
[16] M.Kawalec, E.Olejnic: Arch. Foundry Eng.2 (2012) 221. 10.2478/v10266-012-0065-2Search in Google Scholar
[17] N.Yoneta, K.Shimizu, H.Hara, M.Tanaka, Y.Nawa: Key Eng. Mater.457 (2011) 249. 10.4028/www.scientific.net/KEM.457.249Search in Google Scholar
[18] J.Ju, H.-G.Fu, D.-M.Fu, S.-Z.Wei, P.Sang, Z.-W.Wu, K.-Z.Tang, Y.-P.Lei: Ironmaking Steelmaking (2016). 10.1080/03019233.2016.1250491Search in Google Scholar
[19] A.D.Koval’, V.G.Efremenko, M.N.Brykov, M.I.Andrushchenko, R.A.Kulikovskii, A.V.Efremenko: J. Frict. Wear33 (2012) 39. 10.3103/S1068366612010072Search in Google Scholar
[20] L.S.Malinov: Russian Metallurgy (Metally)6 (1999) 81.Search in Google Scholar
[21] R.Colaço, R.Vilar: Wear258 (2005) 225. 10.1016/j.wear.2004.09.029Search in Google Scholar
[22] V.G.Efremenko, K.Shimizu, T.Noguchi, A.V.Efremenko, Yu.G.Chabak: Wear305 (2013) 155. 10.1016/j.wear.2013.06.006Search in Google Scholar
[23] X.L.Xu, Z.W.Yu, Y.Q.Ma, X.Wang, Y.Q.Shi: Mater. Sci. Technol.18 (2002) 1561. 10.1179/026708302225007466Search in Google Scholar
[24] T.Angel: J. Iron Steel Inst.177 (1954) 165.Search in Google Scholar
[25] V.G.Efremenko, K.Shimizu, A.P.Cheiliakh, T.V.Kozarevskaya, K.Kusumoto, K.Yamamoto: Int. J. Miner., Metall. Mater.21 (2014) 1096. 10.1007/s12613-014-1014-6Search in Google Scholar
[26] S.S.Gorelik, L.N.Rastorguev, Yu.A.Skakov: X-ray Diffraction and Electron-optical Analyses, MISiS, Moscow (2002).Search in Google Scholar
[27] R.C.Sharma: Principles of heat treatment of steels, New Age International (2007).Search in Google Scholar
[28] Yu.G.Chabak, V.G.Efremenko: Metallofiz. Noveishie Tekhnol.34 (2012) 1205.Search in Google Scholar
[29] A.E.Karantzalis, A.Lekatou, H.Mavros: J. Mater. Eng. Perform.18 (2009) 174. 10.1007/s11665-008-9285-6Search in Google Scholar
[30] A.Bedolla-Jacuinde, L.Arias, B.Hernández: J. Mater. Eng. Perform.12 (2003) 371. 10.1361/105994903770342881Search in Google Scholar
[31] A.D.Koval’, V.G.Efremenko, M.N.Brykov, M.I.Andrushchenko, R.A.Kulikovskii, A.V.Efremenko: J. Frict. Wear33 (2012) 153. 10.3103/S1068366612020079Search in Google Scholar
[32] MortezaZandrahimi, M.Reza Bateni, A.Poladi, A.Szpuna Jerzy: Wear263 (2007) 674. 10.1016/j.wear.2007.01.107Search in Google Scholar
[33] J.Y.Yun, G.S.Shin, M.C.Park, H.S.Lee, W.S.Kang, S.J.Kim: Wear338–339 (2015) 379. 10.1016/j.wear.2016.09.005Search in Google Scholar
[34] I.M.Hutchings: Tribology: Friction and Wear of Engineering Materials, Butterworth-Heinemann (2003). 10.1016/0261-3069(92)90241-9Search in Google Scholar
[35] M.Ognjanovic: Tribology in Industry26 (2004) 44.Search in Google Scholar
[36] G.Laird, R.Gungdlach, K.Rohring: Abrasive-Resistance Cast Iron Handbook, Des Plaines: The American Foundry Society (2000).Search in Google Scholar
[37] D.Li, L.Liu, Y.Zhang, C.Ye, X.Ren, Y.Yang, Q.Yang: Mater. Des.30 (2009) 340. 10.1016/j.matdes.2008.04.061Search in Google Scholar
[38] R.Choteborsky, P.Hrabe, M.Muller, J.Savkova, M.Jirka, M.Navratilova: Res. Agric. Eng.55 (2009) 101.10.17221/24/2008-RAESearch in Google Scholar
© 2018, Carl Hanser Verlag, München