Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter January 29, 2018

Isothermal sections of the Co–Ni–Ti system at 950 and 1 000 °C

  • Han Li , Peng Zhou , Yong Du and Zhanpeng Jin


The isothermal sections of the Co–Ni–Ti system at 950 and 1 000 °C were investigated experimentally. Diffusion couples were measured by electron probe microanalysis to construct the phase relations at 950 °C, whereas eleven key alloys annealed at 1 000 °C were investigated using X-ray diffraction and electron probe microanalysis. The ternary phase, τ-(Co,Ni)3Ti (hP24-VCo3), was observed at both temperatures. At 950 °C, continuous solid solutions are formed between CoTi2 and NiTi2 as well as between CoTi and NiTi. Eight 3-phase regions, i. e. Ni3Ti + (Co,Ni)Ti + τ, Ni3Ti + γ-(Co,Ni) + τ, τ + c-Co2Ti + (Co,Ni)Ti, τ + c-Co2Ti + Co3Ti, τ + Co3Ti + γ-(Co,Ni), c-Co2Ti + h-Co2Ti + Co3Ti, L + β-(Ti) + (Co,Ni)Ti2 and L + (Co,Ni)Ti2 + (Co,Ni)Ti, were constructed at 1 000 °C. Considerable ternary solubilities in Ni3Ti, Co3Ti and c-Co2Ti were determined.

*Correspondence address, Dr. Peng Zhou, Hunan Provincial Key Defense Laboratory of High Temperature Wear Resisting Materials and Preparation Technology, Hunan University of Science and Technology, Xiangtan 411201, P.R. China, Tel.: +86 15974298034, E-mail:


[1] C.W.Morton, D.J.Wills, K.Stjernberg: Int. J. Refract. Met. Hard Mater.23 (2005) 287. 10.1016/j.ijrmhm.2005.05.011Search in Google Scholar

[2] M.Schwarzkopf, H.E.Exner, H.F.Fischmeister: Mater. Sci. Eng.A 105 (1988) 225. 10.1016/0025-5416(88)90500-9Search in Google Scholar

[3] T.M.Pollock, S.Tin: J. Propul. Power.22 (2006) 361. 10.2514/1.18239Search in Google Scholar

[4] A.F.Guillermet: Z. Metallkd.78 (1987) 639.10.1515/ijmr-1987-780905Search in Google Scholar

[5] A.V.Davydov, U.R.Kattner, D.Josell, J.E.Blender, R.M.Waterstreat, A.J.Shapiro, W.J.Boettinger: Metall. Mat. Trans.A 32 (2001) 2175. 10.1007/s11661-001-0193-8Search in Google Scholar

[6] J.D.Keyzer, G.Cacciamani, N.Dupin, P.Wollants: CALPHAD.33 (2009) 109. 10.1016/j.calphad.2008.10.003Search in Google Scholar

[7] T.B.Massalski, H.Okamoto, P.R.Subramanian, L.Kacprzak (Eds.): Binary Alloy Phase Diagrams, 2nd Ed., ASM, Metals Park, Ohio (1990).Search in Google Scholar

[8] P.Villars, L.D.Calvert: Pearson's Handbook of Crystallographic Data for Intermetallic Phases, ASM, Metals Park, Ohio (1985). 3856555Search in Google Scholar

[9] F.van Loo, G.F.Bastin: J. Less Common Met.81 (1981) 61. 10.1016/0022-5088(81)90269-1Search in Google Scholar

[10] V.I.Gryzunov, A.S.Sagyndykov: Fiz. Met. Metalloved.49 (1980) 178.Search in Google Scholar

[11] V.I.Gryzunov, A.S.Sagyndykov, E.Sokolovskaya: Fiz. Met. Metalloved.54 (1982) 1118.Search in Google Scholar

[12] V.I.Gryzunov, G.V.Shcherbedinskiy, E.Sokolovskaya: Fiz. Met. Metalloved.56 (1983) 194.Search in Google Scholar

[13] Y.Du, Z.P.Jin, P.Y.Huang: J. Phase Equilibria.14 (1993) 348. 10.1007/bf02668232Search in Google Scholar

[14] P.Riani, K.Sufryd and G.Cacciamani: CALPHAD.44 (2014) 26. 10.1016/j.calphad.2013.06.008Search in Google Scholar

[15] J.van Vucht: J. Less Common Met.11 (1966) 308. 10.1016/0022-5088(66)90064-6Search in Google Scholar

[16] A.K.Sinha: Trans. Met. Soc. AIME.245 (1969) 911.10.1002/j.1834-4461.1969.tb01017.xSearch in Google Scholar

Received: 2017-03-18
Accepted: 2017-08-31
Published Online: 2018-01-29
Published in Print: 2018-02-12

© 2018, Carl Hanser Verlag, München

Downloaded on 1.6.2023 from
Scroll to top button