Accessible Requires Authentication Published by De Gruyter May 30, 2018

Hydrothermal synthesis of superparamagnetic zinc–nickel ferrite nanoparticles

Anh T. Q. Luong and Dan V. Nguyen


Zn0.8Ni0.2Fe2O4 nanoparticles were prepared in a three-step synthesis involving the co-precipitation of metal nano-hydroxide, coating the metal nano-hydroxide with oleic acid, and hydrothermal treatment (ferritization). The nanoparticles were analyzed using X-ray diffraction, energy-dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy and transmission electron microscopy. All samples heated at temperatures from 140 °C to 180 °C were crystalline Zn0.8Ni0.2Fe2O4 with particle sizes ranging from 5–8 nm. Vibrating sample magnetometry results indicated that the coercive force and remanence of the samples were close to zero, and the saturation magnetization values were high (14.20–27.12 emu · g−1).

*Correspondence address, Anh T.Q. Luong MS, Faculty of Materials Technology Ho Chi Minh University of Technology, 268 Ly Thuong Kiet St., Ward 14, District 10, Ho Chi Minh City 700000, Viet Nam, Tel.: +84 937452177, E-mail:


[1] P.L.Leng, M.G.Naseri, E.Saion, A.H.Shaari, M.A.Kamaruddin: Adv. Nanopart.2 (2013) 378. 10.4236/anp.2013.24052 Search in Google Scholar

[2] M.Kurian, D.S.Nair: J. Saudi Chem. Soc.20 (2016) 517. 10.1016/j.jscs.2013.03.003 Search in Google Scholar

[3] H.Guan, L.K.Chuan, H.Soleimani: Am. J. Appl. Sci.11 (2014) 878. 10.3844/ajassp.2014.878.882 Search in Google Scholar

[4] A.Goldman: Modern Ferrite technology, Springer Science, USA (2006) 438. Search in Google Scholar

[5] A.H.Lu, E.E.Salabas, F.Schuth: Angew. Chem. Int. Ed.46 (2007) 1222. 17592608 10.1002/anie.200602866 Search in Google Scholar

[6] M.Benz: Superparamagnetism: Theory and applications, Research gate (2012). Search in Google Scholar

[7] M.Gao, W.Li, J.Dong, Z.Zhang, B.Yang: World J. Condens. Matter Phys.1 (2011) 49. 10.4236/wjcmp.2011.12008 Search in Google Scholar

[8] A.Repko, D.Nižňanský, J.Poltierová-Vejpravová: J. Nanopart. Res.13 (2011) 5021. 10.1007/s11051-011-0483-z Search in Google Scholar

[9] S.J.Azhagushanmugam, N.Suriyanarayanan, R.Jayaprakash: Phys. Procedia.49 (2013) 44. 10.1016/j.phpro.2013.10.009 Search in Google Scholar

[10] S.J.Azhagushanmugam, N.Suriyanarayanan, R.Jayaprakash: J. Environ. Res. Develop.1A (2012) 421. Search in Google Scholar

[11] S.Jovanovich, M.Spreitzer, M.Tramšek, Z.Trontelj, D.Suvorov: J. Phys. Chem. C118 (2014) 13844. 10.1021/jp500578f Search in Google Scholar

[12] I.U.Din, S.Tasleem, A.Naeem, M.S.Shaharun, G.M.J.Al Kaisy: Aust. J. Basic Appl. Sci.7 (2013) 154. Search in Google Scholar

[13] P.B.C.Rao, S.P.Setty: Int. J. Eng. Sci. Technol.2 (2010) 3351. 10.4314/ijest.v2i2.59160 Search in Google Scholar

[14] S.K.Date, P.A.Joy, P.S. AnilKumar, B.Sahoo, W.Keune: Phys. Status Solidi C1 (2004) 3495. 10.1002/pssc.200405489 Search in Google Scholar

[15] C.Hu, Z.Gao, X.Yang: J. Magn. Magn. Mater.320 (2008) 70. 10.1016/j.jmmm.2007.12.006 Search in Google Scholar

[16] L.H.Lee, D.Y.Maeng, Y.S.Kim, C.W.Won: J. Mater. Sci. Lett.18 (1999) 1029. 10.1023/A:1006619409011 Search in Google Scholar

[17] D.Jiles: Introduction to magnetism and magnetic materials, Chap-Hall, USA (1994) 430. Search in Google Scholar

[18] B.D.Cullity: Element of X-ray diffraction, Massachusetts, Adison – Wesley (1956) 531. 10.1021/ed034pA178 Search in Google Scholar

[19] M.Zahraei, A.Monshi, M.P.Morales, D.Shahbazi–Gahrouei, M.Amirnasr, B.Behdadfar: J. Magn. Magn. Mater.393 (2015) 429. 10.1016/j.jmmm.2015.06.006 Search in Google Scholar

Received: 2017-10-05
Accepted: 2017-12-21
Published Online: 2018-05-30
Published in Print: 2018-06-12

© 2018, Carl Hanser Verlag, München