Accessible Requires Authentication Published by De Gruyter July 4, 2018

Solidification behavior and microstructural characterization of Ni–Fe–W and Ni–Fe–W–Co matrix alloys

A. Sambasiva Rao, M. K. Mohan and A. K. Singh

Abstract

The present work describes the solidification behavior of alloys Ni-29Fe-18 W (A1), Ni-29Fe-18W-5Co (A2), Ni-29Fe-18W-10Co (A3) and Ni-10Fe-30W-16Co (A4) and corresponding solidification reactions have been proposed. The alloys A1, A2 and A3 display typical dendritic microstructure while the alloy A4 exhibits the presence of sub-grains within high angle grain boundaries. The segregation coefficient (k′) values of all the alloying elements have been calculated from electron probe micro analyzer data and utilized to explain partitioning behavior of the alloys during solidification. The elements W, Co and Ni, Fe tend to segregate at dendritic and interdendritic regions in alloys A1, A2 and A3, respectively. The alloy A4 exhibits the predominant partitioning of Fe at sub-grain boundaries. Primary solidification product in all the alloys is fcc γ phase. The appearance of W-O particles in interdendritic region of alloys A2 and A3 is due to non-dissolution of the same in liquid while W precipitation occurs in alloy A4 due to solid state phase transformation. All the alloys exhibit the presence of shear bands during Vickers indentation although the origin of the same is different in A1 than the alloys A2, A3, A4. The extent of shear banding is significantly large in alloy A1 in comparison to those of the other alloys.


*Correspondence address, Dr. A. K. Singh, Defence Metallurgical Research Laboratory, Kanchanbagh P.O., Hyderabad – 500058, India, Tel.: +91-40-24586488, Fax: +91-40-24340683, E-mail:

References

[1] F.V.Lenel, in: Powder Metallurgy Principles and Application, Princeton, Metal Powder Industry Federation1980. Search in Google Scholar

[2] U. RaviKiran, A. SambasivaRao, M.Sankarnarayana, T.K.Nandy: Int. J. Refract. Met. Hard Mater.33 (2012) 113. 10.1016/j.ijrmhm.2012.03.003 Search in Google Scholar

[3] R.Gero, D.Chaiat, in: I. Minkoff (Ed.), Mater. Eng. Conf., Israel (1981) 46. Search in Google Scholar

[4] A.Upadhyaya: Material Chemistry and Physics67 (2001) 101. 10.1016/S0254-0584(00)00426-0 Search in Google Scholar

[5] H.J.Ryu, S.H.Hong, H.W.Baek: Mater. Sci. Eng. A291 (2000) 91. 10.1016/S0921-5093(00)00968-0 Search in Google Scholar

[6] B.Xi, L.Jinxu, L.Shukui, L.Chicui, G.Wenqui, W.G.Tengteng: Mater. Sci. Eng. A553 (2012) 142. 10.1016/j.msea.2012.06.003 Search in Google Scholar

[7] B.Ravi, R.M.German: Int. J. Refract. Met. Hard Mater.22 (2004) 117. 10.1016/j.ijrmhm.2004.01.006 Search in Google Scholar

[8] D.V.Edmonds, P.N.Jones: Metall. Trans. A10 (1979) 289. 10.1007/BF02658336 Search in Google Scholar

[9] A.Takeuchi, A.Inoue: Mater. Trans.46 (2005) 2817. 10.2320/matertrans.46.2817 Search in Google Scholar

[10] U. RaviKiran, A.Panchal, M.Sankarnarayana, T.K.Nandy: Int. J. Refract. Met. Hard Mater.37 (2012) 1. 10.1016/j.ijrmhm.2012.10.002 Search in Google Scholar

[11] Z.A.Hamid, S.F.Moustafa, W.M.Daoush, F.A.Mouez, M.Hassan: Open Journal of Applied Sciences3 (2013) 15. 10.4236/ojapps.2013.31003 Search in Google Scholar

[12] C.M.Kipphut, A.Bose, S.Farooq, R.M.German: Metall. Trans.A19 (1988) 1905. 10.1007/BF02645192 Search in Google Scholar

[13] R.Bollina, M.Bell, Y.Wu, R.M.German: Advances in powder metallurgy and particulate materials, MPIF, Princeton, NJ (2002) 211. Search in Google Scholar

[14] R.M.German, L.L.Bourguignon, B.H.Rabin: Journal of Metals37 (1985) 36. 10.1007/BF03257677 Search in Google Scholar

[15] U. RaviKiran, A.Panchal, M.Sankarnarayana, G.V.S. NageswaraRao, T.K.Nandy: Mater. Sci. Eng. A640 (2015) 82. 10.1016/j.msea.2015.05.046 Search in Google Scholar

[16] A.Bose, R.M.German: Metall. Trans. A21 (1990) 1325. 10.1007/BF02698261 Search in Google Scholar

[17] Y.Wu, R.M.German, B.Marx, P.Suri, R.Bollina: J. Mater. Sci.38 (2003) 2271. 10.1023/A:1023725508608 Search in Google Scholar

[18] V.Srikanth, G.S.Upadhyaya: Transactions of powder metallurgy of India (PMAI), 12 (1985) 16. Search in Google Scholar

[19] G.S.Upadhyaya, V.Srikanth, in: Sintering 87, Ed., S.Somiya, M.Shimada, Int. Inst. for Sci. of Sintering, Elsevier applied science, Barking, U K, 1988, 475. Search in Google Scholar

[20] J.N.Dupont: J. Mater. Sci.32 (1997) 4101. 10.1023/A:1018658025359 Search in Google Scholar

[21] M.Durand-Charee, in: The microstructure of superalloys, Gordon and Breach Science Publishers, Toronto, Canada (1997) 60. Search in Google Scholar

[22] E.C.Caldwell, F.J.Fela, G.E.Fuchs: JOM9 (2004) 44. 10.1007/s11837-004-0200-9 Search in Google Scholar

[23] R MGerman: Liquid Phase Sintering, Plenum Press, Rensselaer Polytechnic Institute, troy, New York, 1985, 228. Search in Google Scholar

[24] J.Das, G.A.Rao, S.K.Pabi: Mater. Sci. Eng. A527 (2010) 7841. 10.1016/j.msea.2010.08.071 Search in Google Scholar

[25] F.J.Humphreys, M.Hatherly, in: Recrystallization and related annealing phenomena, Elsevier Ltd., Oxford OX5 1GB, U.K., 2004. Search in Google Scholar

[26] P.Manda, U.Chakkingal, A.K.Singh: Mater. Charact.96 (2014) 151. 10.1016/j.matchar.2014.07.027 Search in Google Scholar

[27] R.R.Prasad, S.Azad, A.K.Singh, R.K.Mandal: Bull. Mater. Sci.31 (2008) 687. 10.1007/s12034-008-0109-y Search in Google Scholar

Received: 2017-06-19
Accepted: 2018-01-13
Published Online: 2018-07-04
Published in Print: 2018-07-12

© 2018, Carl Hanser Verlag, München