Accessible Requires Authentication Published by De Gruyter July 4, 2018

Grain size gradient naturally prepared through recrystallization in rapidly solidified undercooled alloy melts

Xiaolong Xu, Yuhong Zhao, Hua Hou and Feng Liu

Abstract

A grain size gradient was naturally prepared through recrystallization in rapidly solidified Ni80Cu20 alloys quenched before recalescence. The fine grains on the surface of quenched specimens were partially recrystallized. However, the coarse grains in the deeper layers of the quenched alloys were fully recrystallized. It is proposed that the grain size gradient is due to recrystallization in the microstructures of the quenched alloys. Annealing the microstructure on the surface of the quenched specimen led to crystal growth via recrystallization. These experimental results provided strong evidence for a grain refinement mechanism in undercooled solidification of alloys.


*Correspondence address, Xiaolong Xu, Yuhong Zhao, Hua Hou, Feng Liu, North University of China, Xueyuan road, Taiyuan, Shanxi 030051, P.R. China, Tel.: +86 15234078249, Fax: +86 15234078249, E-mail: , Web: http://3y.nuc.edu.cn/info/1113/4412.htm

References

[1] P.Haasen: Physical Metallurgy, third ed., Cambridge university press. 1996. Search in Google Scholar

[2] F.J.Humphreys, M.Hatherly: Recrystallization and Related Annealing Phenomena, (2004), second ed., New York, Oxford. 10.1016/B978-008044164-1/50002-5 Search in Google Scholar

[3] J.W.Christian: The Theory of Transformation in Metals and Alloys: Recovery, recrystallization and Grain Growth, (2002), Oxford, Pergamon Press. Search in Google Scholar

[4] J.L.Walker: The Physical Chemistry of Process Metallurgy, Part 2, (1959), New York, Interscience. Search in Google Scholar

[5] F.Liu, G.C.Yang: J. Cryst. Growth231 (2001) 295. 10.1016/S0022-0248(01)01438-5 Search in Google Scholar

[6] W.W.Mullins, R.F.Sekerka: Dyna. Curv. fron. (1988) 444. 10.1016/B978-0-08-092523-3.50037-X Search in Google Scholar

[7] X.L.Xu, Y.Z.Chen, F.Liu: Mater. Sci. Technol.28 (2012) 1492. 10.1179/1743284712Y.0000000055 Search in Google Scholar

[8] X.L.Xu, Y.Z.Chen, F.Liu: Mater. Sci. Technol.29 (2012) 117. 10.1179/1743284712Y.0000000102 Search in Google Scholar

[9] X.L.Xu, Y.Z.Chen, F.Liu: Mater. Sci. Technol.28 (2012) 886. 10.1179/1743284712Y.0000000049 Search in Google Scholar

[10] X.L.Xu, Y.Z.Chen, F.Liu: Mater. Lett.81 (2012) 73. 10.1016/j.matlet.2012.04.042 Search in Google Scholar

[11] X.L.Xu, Y.Z.Chen, F.Liu: J. Cryst. Growth377 (2013) 153. 10.1016/j.jcrysgro.2013.05.016 Search in Google Scholar

[12] X.L.Xu, F.Liu: J. Alloys Compd.597 (2014) 205. 10.1016/j.jallcom.2014.01.228 Search in Google Scholar

[13] S.Y.Lu, J.F.Li, Y.H.Zhou: J. Cryst. Growth.309 (2007) 103. 10.1016/j.jcrysgro.2007.09.005 Search in Google Scholar

[14] G.Wilde, G.P.Gorler, R.Willnecker: Appl. Phys. Lett.69 (1996) 2995. 10.1063/1.117755 Search in Google Scholar

[15] R.Willnecker, G.P.Gorler, G.Wilde: Mater. Sci. Eng. A226–228 (1997) 439. 10.1016/S0921-5093(97)80054-8 Search in Google Scholar

[16] M.Schwarz, A.Karma, K.Eckler, D.M.Herlach: Phys. Rev. Lett.73 (1994) 1380. PMid:10056778; 10.1103/PhysRevLett.73.1380 Search in Google Scholar

[17] S.Y.Lu, J.F.Li, Y.H.Zhou: J. Alloys Compd.458 (2008) 517. 10.1016/j.jallcom.2007.04.030 Search in Google Scholar

[18] G.L.F.Powell: J. Mater. Sci. Lett.10 (1991) 745. 10.1007-BF00723265 Search in Google Scholar

[19] J.F.Li, Y.C.Liu, Y.L.Lu, G.C.Yang, Y.H.Zhou: J. Cryst. Growth192 (1998) 462. 10.1016/S0022-0248(98)00399-6 Search in Google Scholar

[20] X.L.Xu, F.Liu: Metall. Mater. Trans. A10 (2017) 4777. 10.1007/s11661-017-4194-7 Search in Google Scholar

Received: 2017-10-05
Accepted: 2018-01-25
Published Online: 2018-07-04
Published in Print: 2018-07-12

© 2018, Carl Hanser Verlag, München