Accessible Requires Authentication Published by De Gruyter July 4, 2018

Formation of amorphous interfacial layer between Zn-based alloy and SiC particles under ultrasonic-assisted brazing

Zhipeng Ma, Haiyang Yu, Zhiwu Xu, Siyao Ma, Wei Cui and Jiuchun Yan


The joining of an aluminium matrix composite to a titanium alloy by ultrasonic-assisted brazing using a Zn-based filler metal was investigated. An approximately 50-nm-thick amorphous Zn–Mg–Si interfacial layer formed between the Zn-based filler metal and SiC particles adjacent to the Ti alloy side of the brazed joint. Many of the Zn crystals that formed during brazing nucleated in this amorphous layer, suggesting that the amorphous layer acted as a diffusion layer between the Zn-based filler metal and SiC ceramic during brazing. This work not only explains the improvement in the performance of the brazing joints by the ultrasonic action but also proposes a strategy to optimise the interfacial structure for other metallic alloys.

*Correspondence address, Zhipeng Ma, Department of Materials Science and Engineering, Northeast Petroleum University, Development Road, No. 199, Daqing 163318, P.R. China, Tel.: +86-459-650-37-93, E-mail:


[1] I.Özdemir, S.Ahrens, S.Mücklich, B.Wielage: Pract. Metallogr.45 (2008) 136. 10.3139/147.100376 Search in Google Scholar

[2] M.B.D.Ellis: Int. Mater. Rev.42 (1996) 41. 10.1179/imr.1996.41.2.41 Search in Google Scholar

[3] A.Urena, L.Gil, E.Escriche, J.M.Gómez de Salazar, M.D.Escalera: Sci. Technol. Weld. Joining6 (2001) 1. 10.1179/136217101101538479 Search in Google Scholar

[4] Z.S.Yu, R.F.Li, K.Qi: Mater. Sci. Technol.26 (2010) 695. 10.1179/174328409X430546 Search in Google Scholar

[5] A.Ghiami, E.A.Diler, R.Ipek: Int. J. Mater. Res.106 (2015) 43. 10.3139/146.111152 Search in Google Scholar

[6] İ.Özdemir, K.Önel: Z. MetaIlkd.97 (2006) 94. 10.3139/146.101210 Search in Google Scholar

[7] O.M.Akselsen: J. Mater. Sci.27 (1992) 569. 10.1007/BF02403862 Search in Google Scholar

[8] Y.Zhang, F.Di, Z.Y.He, X.C.Chen: J. Iron. Steel Res. Int.13 (2006) 1. 10.1016/S1006-706X(06)60032-0 Search in Google Scholar

[9] A.Passerone, F.Valenza, M.L.Muolo: Mater. Sci. Forum884 (2017) 132. 10.4028/ Search in Google Scholar

[10] X.Chen, J.Yan, S.Ren, Q.Wang, J.Wei, G.Fan: Ceram. Int.40 (2014) 683. 10.1016/j.ceramint.2013.06.055 Search in Google Scholar

[11] X.Chen, J.Yan, F.Gao, J.Wei, Z.Xu, G.Fan: Ultrason. Sonochem.20 (2013) 144. 10.1016/j.ultsonch.2012.06.011 Search in Google Scholar

[12] Z.Ma, W.Zhao, J.Yan, D.Li: Ultrason. Sonochem.18 (2011) 1062. PMid:21489846; 10.1016/j.ultsonch.2011.03.025 Search in Google Scholar

[13] K.Bobzin, T.Schläfer, N.Kopp: Int. J. Mater. Res.102 (2011) 972. 10.3139/146.110550 Search in Google Scholar

[14] R.D.Evans, J.D.Boyd: Scr. Mater.49 (2003) 59. 10.1016/S1359-6462(03)00180-5 Search in Google Scholar

[15] L.M.Tham, M.Gupta, L.Cheng: Acta. Mater.49 (2001) 3243. 10.1016/S1359-6454(01)00221-X Search in Google Scholar

[16] M.Schnabel, C.Weiss, P.Löper, M.Canino, C.Summonte, P.R.Wilshaw, S.Janz: J. Appl. Phys.116 (2014) 024315. 10.1063/1.4890030 Search in Google Scholar

[17] P.L.Ratnaparkhi, J.M.Howe: Metall. Mater. Trans. A25 (1994) 617. 10.1007/BF02651603 Search in Google Scholar

[18] H.Ji, H.Chen, M.Li: Ultrason. Sonochem.34 (2017) 491. PMid:27773273; 10.1016/j.ultsonch.2016.06.031 Search in Google Scholar

[19] S.Tamura, Y.Tsunekawa, M.Okumiya, M.Hatakeyama: J. Mater. Process. Tech.206 (2008) 322. 10.1016/j.jmatprotec.2007.12.032 Search in Google Scholar

[20] Z.Xu, J.Yan, W.Chen, S.Yang: Mater. Lett.62 (2008) 2615. 10.1016/j.matlet.2007.12.065 Search in Google Scholar

Received: 2017-12-05
Accepted: 2018-02-05
Published Online: 2018-07-04
Published in Print: 2018-07-12

© 2018, Carl Hanser Verlag, München