Accessible Requires Authentication Published by De Gruyter August 30, 2018

Pore formation mechanism of porous Ni–Cr–Al alloys prepared by elemental powder reactive synthesis

Yifeng Xiao, Yang Xu, Liang Wu, Yanfei Xu, Jinwen Qian, Xiaohua Guo, Xiaona Li and Yuehui He

Abstract

Porous Ni–Cr–Al alloy samples were fabricated by pressureless sintering of Ni, Cr, and Al elemental powders. The phase transformation, swelling behavior, pore structure parameters, microstructure, and pore formation mechanisms of porous Ni–Cr–Al alloys were systematically investigated. Results show that obvious swelling behavior occurs during sintering. The open porosity of the Ni–Cr–Al alloy increases as the sintering temperature increases below 920°C, followed by a relatively declining value for phase transformation beyond 920°C. The porous Ni–Cr–Al alloy samples exhibit an open porosity of 35.02% when sintered at 1200°C for 3 h. The main pore formation mechanisms are the Kirkendall effect and the development of interparticle pores.


*Correspondence address, Mrs. Liang Wu, School of Mechanical Engineering Xiangtan University Hunan, P. R. China, Key Laboratory of welding robot and application technology of Hunan Province Xiangtan University Xiangtan, P. R. China, Engineering Research Center of Complex Tracks Processing Technology and Equipment of Ministry of Education, Xiangtan University Xiangtan, P. R. China, E-mail:

References

[1] J.H.Qin, Q.Chen, C.Y.Yang, Y.Huang: J. Alloys Compd.654 (2016) 3944. 10.1016/j.jallcom.2015.09.148 Search in Google Scholar

[2] Q.Pang, Z.L.Hu, D.L.Sun: Vacuum129 (2016) 8698. 10.1016/j.vacuum.2016.04.018 Search in Google Scholar

[3] M.Y.Gao, C.Yang, Q.B.Zhang, Y.W.Yu, Y.X.Hua, Y.Li, P.Dong: Electrochim. Acta.215 (2016) 609616. 10.1016/j.electacta.2016.08.145 Get rights and content Search in Google Scholar

[4] Q.Pang, Z.L.Hu, G.R.Wang: T. Nonferr. Metal. Soc.27 (2017) 10521062. 10.1016/S1003-6326(17)60123-7 Search in Google Scholar

[5] L.P.Yu, Y.Jiang, Y.H.He, X.L.Liu, H.B.Zhang: Mater. Chem. Phys.163 (2015), 355361. 10.1016/j.matchemphys.2015.07.050 Search in Google Scholar

[6] P.Audigié, R.V.Put, H.Murakami, D.Monceau: Surf. Coat. Technol.309 (2017) 258265. 10.1016/j.surfcoat.2016.11.028 Search in Google Scholar

[7] J.Zhang, J.Huang, G.Shang, Z.Wang, H.Wang: Corros. Sci. Prot. Technol.28 (2016) 531536. 10.11903/1002.6495.2016.046 Search in Google Scholar

[8] D.Wu, S.Jiang, Q.Fan, J.Gong, C.Sun: Acta Metall. Sin.50 (2014) 11701178. 10.11900/0412.1961.2014.00077 Search in Google Scholar

[9] W.G.Sloof, T.J.Nijdam: Int. J. Mater. Res.100 (2009) 13181330. 10.3139/146.110201 Search in Google Scholar

[10] D. AzimiYancheshmeh, M.Esmailian, K.Shirvani: Int. J. Hydrogen Energy.43 (2018) 53655373. 10.1016/j.ijhydene.2017.08.039 Search in Google Scholar

[11] Y.Wang, Y.Liu, H.P.Tang, W.J.Li: Mater. Charact.107 (2015) 283292. 10.1016/j.matchar.2015.06.029 Search in Google Scholar

[12] H.V.P.Nguyen, S.A.Song, D.Seo, D.N.Park, H.C.Ham, I.H.Oh, S.P.Yoon, J.Han, S.W.Nam, J.Kim: Mater. Chem. Phys.136 (2012) 910916. 10.1016/j.matchemphys.2012.08.018  Search in Google Scholar

[13] W.Liu, X.Y.Xu, H.M.Zhao, C.J.Sun: Key Eng. Mater.443 (2010) 475480. 10.4028/www.scientific.net/KEM.443.475 Search in Google Scholar

[14] J.He, H.Guo, H.Peng, S.K.Gong: Appl. Surf. Sci.274 (2013) 144150. 10.1016/j.apsusc.2013.02.136 Search in Google Scholar

[15] M.Rahimian, S.Milenkovic, L.Maestro, A.Eguidazu Ruiz De Azua, I.Sabirov: Mater. Des.87 (2015) 712720. 10.1016/j.matdes.2015.08.038 Search in Google Scholar

[16] L.Y.Sheng, T.F.Xi, C.Lai, J.T.Guo, Y.F.Zheng: T. Nonferr. Metal. Soc.22 (2012) 489495. 10.1016/S1003-6326(11)61203-X Search in Google Scholar

[17] H.P.Tang, W.Yan, Y.Liu, W.J.Li, C.Han: J. Cent. South Univ.20 (2013) 33453353. 10.1007/s11771-013-1495-x Search in Google Scholar

[18] S.V.Raju, B.K.Godwal, J.Yan, R.Jeanloz, S.K.Saxena: J. Alloys Compd.657 (2016) 889892. 10.1016/j.jallcom.2015.10.092 Search in Google Scholar

[19] H.X.Dong, Q.P.Liu, Y.H.He, C.T.Liud: J. Comput. Theor. Nanos.12 (2012) 272275. 10.1166/asl.2012.2746 Search in Google Scholar

[20] L.Wu, Y.Zeng, Y.F.Xiao, Y.H.He: Powder Metall.57 (2014) 387393. 10.1179/1743290113Y.0000000067 Search in Google Scholar

[21] E.Jakobs, W.J.Koros: J. Membr. Sci.124 (1997) 149159. 10.1016/s0376-7388(96)00203-7 Search in Google Scholar

[22] K.A.Philpot, Z.A.Munir, J.B.Holt: J. Mater. Sci.22 (1987) 159169. 10.1007/BF01160566 Search in Google Scholar

[23] J.T.Guo: Ordering Ni–Al intermetallics, Beijing: Science Press, (2003) 315. Search in Google Scholar

[24] C.K.Sudbrac, T.D.Ziebell, R.D.Noebe, D.N.Seidman: Acta Mater.56 (2008) 448463. 10.1016/j.actamat.2007.09.042 Search in Google Scholar

[25] G.R.Wallwork, A.Z.Hed: Oxid. Met.3 (1971) 171184. 10.1007/BF00603485 Search in Google Scholar

[26] P.J.Zhou, J.J.Yu, X.F.Sun, H.R.Guan, Z.Q.Hu: Scripta Mater.57 (2007) 643646. 10.1016/j.scriptamat.2007.06.003 Search in Google Scholar

[27] V.H.Garcia, P.M.Mors, C.Scherer: Acta Mater.48 (2000) 12011206. 10.1016/s1359-6454(99)00379-1 Search in Google Scholar

[28] R.A.Gregg, F.N.Rhines: Metall. Trans.4 (1973) 13651374. 10.1007/BF02644534 Search in Google Scholar

[29] H.H.Hausner, O.V.Roman: Sov. Powder Metall.3 (1965) 180184. 10.1007/BF00773945 Search in Google Scholar

[30] J.H.Dedrick, A.Gerds: J. Appl. Phys.20 (1949) 10421044. 10.1063/1.1698271 Search in Google Scholar

[31] J.G.R.Rockland: Acta Metall.15 (1967) 277286. 10.1016/0001–6160(67)90203–9 Search in Google Scholar

[32] L.S.Darken: Metall. Mater. Trans. B41 (2010): 277294. 10.1007/s11661-010-0177-7 Search in Google Scholar

[33] B.Wierzba: Physica A.392 (2013) 28602867. 10.1016/j.physa.2012.11.011 Search in Google Scholar

[34] D.M.Liu, X.Z.Li, Y.Q.Su, M.Rettenmayr, J.J.Guo, H.Z.Fu: Appl. Phys. A.116 (2014) 18211831. 10.1007/s00339-013-8168-3 Search in Google Scholar

[35] M.Hasaka, T.Morimura, Y.Uchiyama, S.Kondo, T.Watanabe, K.Hisatsune, T.Furuse: Acta Metall.29 (1993) 959962. 10.1016/0956-716x(93)90389-a Search in Google Scholar

[36] S.P.Garg, G.B.Kale, R.V.Patil, T.Kundu: Intermetallics.7 (1999) 901908. 10.1016/s0966-9795(98)00139-3 Search in Google Scholar

[37] S.B.Jung, T.Yamane, Y.Minamino, K.Hirao, H.Araki, S.Saji: J. Mater. Sci. Lett.11 (1992) 13331337. 10.1007/BF00729354 Search in Google Scholar

[38] M.Danielewski, B.Wierzba, K.Tkacz-Śmiech, A.Nowotnik: Comput. Mater. Sci.69 (2013) 16. 10.1016/j.commatsci.2012.11.026 Search in Google Scholar

[39] H.Wei, X.F.Sun: Scripta Mater.62 (2010) 632634. 10.1016/j.scriptamat.2010.01.030 Search in Google Scholar

Received: 2017-10-31
Accepted: 2018-02-08
Published Online: 2018-08-30
Published in Print: 2018-09-14

© 2018, Carl Hanser Verlag, München