Accessible Requires Authentication Published by De Gruyter August 30, 2018

Thermodynamic modelling of the Hf–Pt system

Bo Yang, Cuiping Guo, Changrong Li and Zhenmin Du

Abstract

By means of the CALPHAD (CAlcultion of PHAse Diagram) technique, the Hf–Pt system was critically assessed. Based on the experimental data, the four solution phases (liquid, fcc, bcc and hcp) were described with the substitutional solution model. The intermetallic compounds Hf3Pt4 and αHfPt were treated as the formula (Hf,Pt)m(Hf,Pt)n by a two-sublattice model. Based on the solid solution range, the intermetallic compounds HfPt4 and Hf2Pt were treated as the formula (Hf,Pt)1(Pt)3 and (Hf)2(Hf,Pt)1, respectively. The intermetallic compound Hf2Pt3 was treated as a stoichiometric compound. The formulas (Hf,Pt)0.5(Hf,Pt)0.5 · (Va)3 and (Hf,Pt)0.25(Hf,Pt)0.75(Va)0.5 were applied to describe the compounds βHfPt with CsCl-type structure (B2) and HfPt3 with Ni3Ti-type structure (D024) to cope with the order-disorder transition from bcc-A2 to bcc-B2 and hcp-A3 to hcp-D024. A set of self-consistent thermodynamic parameters of the Hf–Pt system was obtained.


*Correspondence address, Prof. Zhenmin Du, Department of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China, Tel./Fax: +86-10-62333772, E-mail:

References

[1] Trw lnc.Oxidation resistant refractory alloys. US Patent: us 3957507 (1976). Search in Google Scholar

[2] A.Yamaguchi, H.Murakami, S.Kuroda, H.Imai: Mater. T. Jim48 (2007) 2422. 10.2320/matertrans.MAW200723 Search in Google Scholar

[3] J.Nesbitt, B.Nagaraj, J.Williams: ntrs.nasa.gov. 2000. https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20010061700.pdf Search in Google Scholar

[4] T.D.Hatchard, J.E.Harlow, D.A.Stevens, G.C.K.Liu, R.J.Sanderson, N.van der Bosch, J.R.Dahn, G.M.Haugen, G.D.Vernstrom, R.T.Atansoski: Electrochim. Acta.56 (2011) 10436. 10.1016/j.electacta.2011.05.059 Search in Google Scholar

[5] G.M.Nowell, D.G.Pearson, C.J.Ottley, M.Tilby: J. Eng. Educ.93 (2005) 313. 10.1039/9781847552419–00243 Search in Google Scholar

[6] A.Baudry, P.Boyer, L.P.Ferreira, S.W.Harris, S.Miraglia, L.Pontonnier: J. Phys.: Condens. Matter.4 (1992) 5025. 10.1088/0953-8984/4/21/018 Search in Google Scholar

[7] J.N.Prieskorn, H.Chen, W.Chen, W.J.Tornquist: J. Phys. Chem.96 (1992) 810. 10.1002/chin.199221028 Search in Google Scholar

[8] J.K.Stalick, R.M.Waterstrat: J. Phase Equilib. Diff.35 (2014) 15. 10.1007/s11669-013-0268-4 Search in Google Scholar

[9] P.J.Meschter, W.L.Worrell: Metall. Trans. A8 (1977) 503. 10.1007/BF02661762 Search in Google Scholar

[10] A.E.Dwight, P.E.Beck: Trans. Met. Soc. AIME.215 (1959) 976. Search in Google Scholar

[11] C.E.Holcombe: J. Less-Common Met.44 (1976) 331. 10.1016/0022-5088(76)90149- Search in Google Scholar

[12] A.E.Dwight, R.A.Jr.Conner, J.W.Downey: Acta Crystallogr.18 (1965) 835. 10.1107/S0365110X65002050 Search in Google Scholar

[13] V.N.Kuznetsov, G.P.Zhmurko, E.M.Sokolovskaya: J. Less-Common Met.163 (1990) 1. 10.1016/0022-5088(90)90080-4 Search in Google Scholar

[14] J.K.Stalick, K.Wang, R.M.Waterstrat: J. Phase Equilib. Diff.34 (2013) 385. 10.1007/s11669-013-0247-9 Search in Google Scholar

[15] V.Srikrishnan, P.J.Ficalora: Metall. Mater. Trans. B5 (1974) 1471. 10.1007/BF02646634 Search in Google Scholar

[16] J.C.Gachon, J.Charles, J.Hertz: Calphad9 (1985) 29. 10.1016/0364-5916(85)90028-8 Search in Google Scholar

[17] L.Topor, O.J.Kleppa: Metall. Mater. Trans. A19 (1988) 1827. 10.1007/BF02645151 Search in Google Scholar

[18] X.Q.Chen, R.Podloucky: Calphad30 (2006) 266. 10.1016/j.calphad.2006.04.004 Search in Google Scholar

[19] O.Levy, G.L.W.Hart, S.Curtarolo: Acta Mater.58 (2010) 2887. 10.1016/j.actamat.2010.01.017 Search in Google Scholar

[20] W.Xing, X.Q.Chen, D.Li, Y.Li, C.L.Fu, S.V.Meschel, X.Ding: Intermetallics28 (2012) 16. 10.1016/j.intermet.2012.03.033 Search in Google Scholar

[21] H.Krarcha, A.Ferroudj, S.Mesadia: Solid State Phen.257 (2016) 38. 10.4028/www.scientific.net/SSP.257.38 Search in Google Scholar

[22] A.T.Dinsdale: Calphad15 (1991) 317. 10.1016/0364-5916(91)90030-N Search in Google Scholar

[23] O.Redlich, A.T.Kister: Ind. Eng. Chem.40 (1948) 345. 10.1021/ie50458a036 Search in Google Scholar

[24] I.Ansara, N.Dupin, H.L.Lukas, S.Bo: J. Alloys Compd.247 (1977) 20. 10.1016/S0925-8388(96)02652-7 Search in Google Scholar

[25] M.Hillert, L.I.Staffansson: Acta Chem. Scand.24 (1970) 3618. 10.3891/acta.chem.scand.24-3618 Search in Google Scholar

[26] B.Sundman, J.Ågren: J. Phys. Chem. Solids42 (1981) 297. 10.1016/0022-3697(81)90144-X Search in Google Scholar

[27] B.Sundman, B.Jansson, J.O.Andersson: Calphad9 (1985) 153. 10.1016/0364-5916(85)90021-5 Search in Google Scholar

[28] C.Wanger: Z. Phys. Chem.22 (1933) 181. 10.1515/zpch-1931-s120 Search in Google Scholar

[29] A.F.Guillermet, W.Huang: Z. Metallkd.79 (1988) 88. Search in Google Scholar

Received: 2017-12-28
Accepted: 2018-04-05
Published Online: 2018-08-30
Published in Print: 2018-09-14

© 2018, Carl Hanser Verlag, München