Skip to content
BY 4.0 license Open Access Published by De Gruyter October 3, 2018

Statistical analysis of micropore size distributions in Al–Si castings evaluated by X-ray computed tomography

  • Christian Garb , Martin Leitner , Markus Tauscher , Moritz Weidt and Roland Brunner

Abstract

In general, micropore size acts as one of the most significant influencing factors on the fatigue strength of aluminium castings. Hence, an in-depth knowledge of the occurrence of micropore sizes and their local distributions in different locations in complexly-shaped lightweight components is of great interest to the casting industry. In this work, the local properties of AlSi8Cu3 and AlSi7Cu0.5Mg cylinder heads and AlSi8Cu3 crankcases were analyzed. Extensive X-ray computed tomography (CT) scans of three specimen positions revealed significant differences in micropore size and distribution. Two CT scan resolutions were selected, with respect to different micropore size populations in the cast components, to enable accurate detection of the microporosity, in addition to an adequate scanning volume, in order to achieve a statistically approved parameter study. Thereby, specimen positions exhibiting smaller mean micropore sizes were scanned at 3 μm/voxel scanning resolution and ones with larger micropore sizes at 8 μm/voxel. A statistical assessment of all of the alloy specifications and specimen positions indicates that the general extreme value and lognormal distribution appropriately describe the micropore size distributions. Finally, an extensive sensitivity study is presented, aimed at examining micropore size characteristics, such as the porosity, sphericity, maximum and mean values and standard deviation, and to investigate their relationships in the investigated cast specimens.


*Correspondence address, Dr. Martin Leitner, Montanuniversität Leoben, Department Product Engineering Chair of Mechanical Engineering Franz Josef-Straße 18, 8700 Leoben Austria, Tel.: +4338424021463, E-mail: , Web: www.unileoben.ac.at

References

[1] Y.X.Gao, J.Z.Yi, P.D.Lee, T.C.Lindley: Fat. Frac. Eng. Mat. Struct.27 (2004) 55970. 10.1111/j.1460-2695.2004.00780.xSearch in Google Scholar

[2] J.-Y.Buffière, S.Savelli, P. HJouneau, E.Maire, R.Fougères: Mater. Sci. Eng.A 316 (2001) 11526. 10.1016/S0921-5093(01)01225-4Search in Google Scholar

[3] Y.Zhang, J.Xu, T.Zhai: Mater. Sci. Eng.A 527 (2010) 363944. 10.1016/j.msea.2010.03.104Search in Google Scholar

[4] X.Zhu, J.Z.Yi, J.W.Jones, J.E.Allison: Metall. Mater. Trans.A38 (2007) 111122. 10.1007/s11661-006-9070-9Search in Google Scholar

[5] J.Z.Yi, X.Zhu, J.W.Jones, J.E.Allison: Metall. Mater. Trans.A38 (2007) 112335. 10.1007/s11661-006-9069-2Search in Google Scholar

[6] G.Nicoletto, R.Konečná, S.Fintova: Int. J. Fat.41 (2012) 3946. 10.1016/j.ijfatigue.2012.01.006Search in Google Scholar

[7] L.Salvo, P.Cloetens, E.Maire, S.Zabler, J.J.Blandin, J.Y.Buffière, W.Ludwig, E.Boller, D.Bellet, C.Josserond: Nuc. Instr. Meth. Phys. Res. Sect. B: Beam Int. Mat. At.200 (2003) 27386. 10.1016/S0168-583X(02)01689-0Search in Google Scholar

[8] N.Vanderesse, É.Maire, A.Chabod, J.-Y.Buffière: Int. J. Fat.33 (2011) 151425. 10.1016/j.ijfatigue.2011.06.010Search in Google Scholar

[9] J.Kastner, B.Harrer, G.Requena, O.Brunke: NDT E Int.43 (2010) 599605. 20976283 10.1016/j.ndteint.2010.06.004Search in Google Scholar PubMed PubMed Central

[10] C.Garb, M.Leitner, F.Grün: Eng. Fract. Mech. (2017) 6171. 10.1016/j.engfracmech.2017.03.018Search in Google Scholar

[11] M.Leitner, C.Garb, H.Remes, M.Stoschka: Mater. Sci. Eng.A707 (2017) 56775. 10.1016/j.msea.2017.09.023Search in Google Scholar

[12] G.Nicoletto, R.Konečná, S.Fintova: Int. J. Fat.41 (2012) 3946. 10.1016/j.ijfatigue.2012.01.006Search in Google Scholar

[13] H.Toda, S.Masuda, R.Batres, M.Kobayashi, S.Aoyama, M.Onodera, R.Furusawa, K.Uesugi, A.Takeuchi, Y.Suzuki: Act. Mater.59 (2011) 49904998. 10.1016/j.actamat.2011.04.049Search in Google Scholar

[14] J.Kastner, B.Harrer, H.P.Degischer: Mat. Charact.62 (2011) 99107. 10.1016/j.matchar.2010.11.004Search in Google Scholar

[15] R.H.Bossi, J.L.Cline, G.E.Georgeson: Rev. Prog. Quant. Nondestr. Eval.10B (1991) 178390. 10.1007/978-1-4615-3742-7_84Search in Google Scholar

[16] P.Hermanek, S.Carmignato: Prec. Eng. (2017). 10.1016/j.precisioneng.2017.03.007Search in Google Scholar

[17] R.M.Hilbinger, S.Gerth, P.Randelzhofer: Mat.-wiss. Werkstofftech.48 (2017) 7787. 10.1002/mawe.201600706Search in Google Scholar

[18] N.Limodin, A. ElBartali, L.Wang, J.Lachambre, J.-Y.Buffiere, E.Charkaluk: Nuc. Instr. Meth. Phys. Res. Sect. B: Beam Int. Mat. At.324 (2014) 5762. 10.1016/j.nimb.2013.07.034Search in Google Scholar

[19] E.J.Gumbel: Statistics of extremes, Dover Publications, Mineola, N.Y. (2004).Search in Google Scholar

[20] K.Wallin: Fat. Frac. Eng. Mat. Struct.33 (2010) 33344. 10.1111/j.1460-2695.2010.01445.xSearch in Google Scholar

[21] M.Tiryakioğlu: Metall. Mater. Trans.A 40 (2009) 162330. 10.1007/s11661-009-9847-8Search in Google Scholar

[22] Y.Murakami: Int. J. Fat.41 (2012) 210. 10.1016/j.ijfatigue.2011.12.001Search in Google Scholar

[23] M.Shirani, G.Härkegard: Int. J. Fat.41 (2012) 18898. 10.1016/j.ijfatigue.2011.09.011Search in Google Scholar

[24] J.-Y.Buffiere, E.Maire, J.Adrien, J.-P.Masse, E.Boller: Exp. Mech.50 (2010) 289305. 10.1007/s11340-010-9333-7Search in Google Scholar

[25] M.Felberbaum, M.Rappaz: Act. Mat.59 (2011) 684960. 10.1016/j.actamat.2011.07.005Search in Google Scholar

[26] C.Garb, M.Leitner, B.Stauder, D.Schnubel, F.Grün: Int. J. Fat.111 (2018) 256268. 10.1016/j.ijfatigue.2018.01.030Search in Google Scholar

[27] BDG: Volumendefizite von Gussstücken aus Aluminium-, Magnesium- und Zinkgusslegierungen. BDG-Richtlinie P202 (2010).Search in Google Scholar

[28] D.O.C.Souza, F.C.Menegalli: Powd. Techn.214 (2011) 5763. 10.1016/j.powtec.2011.07.035Search in Google Scholar

[29] A.Boschetto, V.Giordano: Meas.45 (2012) 102338. 10.1016/j.measurement.2012.01.041Search in Google Scholar

[30] MathWaveTechnologies: EasyFit Professional, MathWave Technologies (2015).Search in Google Scholar

[31] M.Kühlmeyer: Statistische Auswertungsmethoden für Ingenieure, Springer, Berlin (2001). 10.1007/978-3-642-56776-6Search in Google Scholar

[32] J.Z.Yi, Y.X.Gao, P.D.Lee: Metall. Mater. Trans.A 34 (2003) 187990. 10.1007/s11661-003-0153-6Search in Google Scholar

[33] S.Beretta, C.Anderson, Y.Murakami: Act. Mat.54 (2006) 22772289. 10.1016/j.actamat.2006.01.016Search in Google Scholar

[34] C.M.Sonsino, K.Dieterich: Giessereiforsch.43 (1991) 13140.Search in Google Scholar

[35] C.M.Sonsino, K.Dieterich: Giessereiforsch.43 (1991) 11930.Search in Google Scholar

[36] Q.G.Wang, D.Apelian, D.A.Lados: J. Light Met.1 (2001) 7384. 10.1016/S1471-5317(00)00008-0Search in Google Scholar

[37] J.Linder, A.Arvidsson, J.Kron: Fat. Frac. Eng. Mat. Struct.29 (2006) 35763. 10.1111/j.1460-2695.2006.00997.xSearch in Google Scholar

[38] B.Köhler, H.Bomas, W.Leis, L.Kallien: Int. J. Fat.44 (2012) 5160. 10.1016/j.ijfatigue.2012.05.011Search in Google Scholar

[39] P.Mu, Y.Nadot, C.Nadot-Martin, A.Chabod, I.Serrano-Munoz, C.Verdu: Int. J. Fat.63 (2014) 97109. 10.1016/j.ijfatigue.2014.01.011Search in Google Scholar

Received: 2018-01-12
Accepted: 2018-04-24
Published Online: 2018-10-03
Published in Print: 2018-10-16

© 2018, Carl Hanser Verlag, München

This work is licensed under the Creative Commons Attribution 4.0 International License.

Downloaded on 29.3.2024 from https://www.degruyter.com/document/doi/10.3139/146.111685/html
Scroll to top button