Accessible Requires Authentication Published by De Gruyter October 30, 2018

Structural evolution and formation mechanism of LiNi0.6Co0.2Mn0.2O2 during high-temperature solid-state synthesis

Shiyi Deng, Zehua Lin, Yunjiao Li, Longlong Xue, Huacheng Li, Yongxiang Chen, Tongxing Lei, Jie Zhu, Jianguo Li and Jinping Zhang

Abstract

LiNi0.6Co0.2Mn0.2O2, an α-NaFeO2 type layered lithium transition metal oxide, is deemed as one of the most promising cathode materials for lithium-ion batteries. To ascertain the structural evolution and formation mechanism of this compound during high-temperature solid-state synthesis, thermal and structural analysis methods were performed, confirmed with the characterization of morphology and lithium residue. LiOH, used as the lithium source, showed both a lower initial temperature and a lower degree of lithium intercalation compared to Li2CO3 when reacting with the precursor. A higher temperature for Li2CO3 and a longer reaction time for LiOH during sintering would be beneficial to the material synthesis. Furthermore, a pre-heat treatment process in the temperature range of 400–600°C is beneficial for the lithium intercalation reaction.


*Correspondence address, Prof. Yunjiao Li, School of Metallurgy and Environment, Central South University, No. 932 South Lushan Road, Changsha 410083, P.R. China, Tel.: +8673188830872, Fax: +8673188710171, E-mail: , Web: http://faculty.csu.edu.cn/liyunjiao/zh_CN/index.htm

References

[1] J.-Y.Kim, S.H.Kim, D.H.Kim, D.Susanto, S.Y.Kim, W.-Y.Chang, B.W.Cho, W.-S.Yoon, S.M.Bak, X.Q.Yang: J. Appl. Electrochem.47 (2017) 565572. 10.1007/s10800-017-1062-5 Search in Google Scholar

[2] C.M.Subramaniyam, H.Celio, K.Shiva, H.Gao, J.B.Goodneough, H.K.Liu, S.X.Dou: Sustainable Energy Fuels1 (2017) 12921298. 10.1039/c7se00164a Search in Google Scholar

[3] L.-X.Yuan, Z.-H.Wang, W.-X.Zhang, X.-L.Hu, J.-T.Chen, Y.-H.Huang, J.B.Goodenough: Energy Environ. Sci.4 (2011) 269284. 10.1039/c0ee00029a Search in Google Scholar

[4] P.Yue, Z.Wang, X.Li, X.Xiong, J.Wang, X.Wu, H.Guo: Electrochim. Acta.95 (2013) 112118. 10.1016/j.electacta.2013.02.037 Search in Google Scholar

[5] H.Yang, X.-L.Wu, M.-H.Cao, Y.-G.Guo: J. Phys. Chem. C113 (2009) 33453351. 10.1021/jp808080t Search in Google Scholar

[6] L.Wang, J.Li, X.He, W.Pu, C.Wan, C.Jiang: J. Solid State Electrochem.13 (2009) 11571164. 10.1007/s10008-008-0671-7 Search in Google Scholar

[7] X.Zhao, J.Wang, X.Dong, G.Liu, W.Yu, L.Wang: J. Chin. Chem. Soc.61 (2014) 10711083. 10.1002/jccs.201400107 Search in Google Scholar

[8] P.Hou, J.Yin, M.Ding, J.Huang, X.Xu: Small.13 (2017) 1701802. PMid:29024465; 10.1002/smll.201701802 Search in Google Scholar

[9] H.-w.Lim: MSc thesis, Failure mechanisms of layered LiNix · CoyMn1-x-yO2 cathodes for Li-ion batteries, Ulsan National Institute of Science and Technology, Korea (2015). Search in Google Scholar

[10] W.Liu, P.Oh, X.Liu, M.Lee, W.Cho, S.Chae, Y.Kim, J.Cho: Angew. Chem. Int. Ed.54 (2015) 44404457. PMid:26555318; 10.1002/anie.201409262 Search in Google Scholar

[11] S.-K.Zhong, L.Wei, Z.-g.ZUO, T.Xin, Y.-h.LI: Trans. Nonferrous Met. Soc. China19 (2009) 14991503. 10.1016/S1003-6326(09)60059-5 Search in Google Scholar

[12] P.Yue, Z.Wang, W.Peng, L.Li, W.Chen, H.Guo, X.Li: Powder Technol.214 (2011) 279282. 10.1016/j.powtec.2011.08.022 Search in Google Scholar

[13] X.Zheng, X.Li, Z.Huang, B.Zhang, Z.Wang, H.Guo, Z.Yang: J. Alloys Compd.644 (2015) 607614. 10.1016/j.jallcom.2015.04.173 Search in Google Scholar

[14] Y.-F.Xia, M.Nie, Z.-B.Wang, F.-D.Yu, Y.Zhang, L.-L.Zheng, J.Wu, K.Ke: Ceram. Int.41 (2015) 1181511823. 10.1016/j.ceramint.2015.05.150 Search in Google Scholar

[15] X.Li, Z.Xie, W.Liu, W.Ge, H.Wang, M.Qu: Electrochim. Acta174 (2015) 11221130. 10.1016/j.electacta.2015.06.099 Search in Google Scholar

[16] C.Qin, J.Cao, J.Chen, G.Dai, T.Wu, Y.Chen, Y.Tang, A.Li, Y.Chen: Dalton Trans.45 (2016) 96699675. 10.1039/c6dt01764a Search in Google Scholar

[17] A.Allred: J. Inorg. Nucl. Chem.17 (1961) 215221. 10.1016/0022-1902(61)80142-5 Search in Google Scholar

[18] V.Kaplan, E.Wachtel, I.Lubomirsky: 19. J. Chem. Thermodynamics43 (2011) 16231627. 10.1016/j.jct.2011.05.020 Search in Google Scholar

[19] X.Wei, S.Zhang, L.He, G.Liu, P.Yang: Int. J. Electrochem. Sci.8 (2013) 18851894. http://www.electrochemsci.org/papers/vol8/80201885.pdf. Search in Google Scholar

[20] D.Mohanty, S.Kalnaus, R.A.Meisner, K.J.Rhodes, J.Li, E.A.Payzant, D.L.Wood, C.Daniel: J. Power Sources229 (2013) 239248. 10.1016/j.jpowsour.2012.11.144 Search in Google Scholar

[21] W.T.Jeong, K.S.Lee: J. Alloys Compd.322 (2001) 205210. 10.1016/S0925-8388(00)01431-6 Search in Google Scholar

[22] J.Kiat, G.Boemare, B.Rieu, D.Aymes: Solid State Commun.108 (1998) 241245. 10.1016/S0038-1098(98)00346-9 Search in Google Scholar

Received: 2018-03-15
Accepted: 2018-06-28
Published Online: 2018-10-30
Published in Print: 2018-11-12

© 2018, Carl Hanser Verlag, München