Accessible Unlicensed Requires Authentication Published by De Gruyter October 30, 2018

Ethylenediamine-assisted synthesis of barium bismuthate microrods and solar light photocatalytic performance

Yong Zhang, Feifei Lin, Tian Wei, Fanglv Qiu, Yue Ma and Lizhai Pei

Abstract

Barium bismuthate microrods were synthesized by a simple ethylenediamine-assisted hydrothermal route using barium acetate and sodium bismuthate as the source materials. The X-ray diffraction pattern shows that the barium bismuthate microrods are composed of monoclinic BaBiO2.5 phase. Scanning electron microscopy images show that the length and diameter of the barium bismuthate microrods are about 10–20 μm and 500 nm–1.5 μm, respectively. The formation and growth of the barium bismuthate microrods are closely related to the temperature, processing duration and ethylenediamine concentration. The solid UV–vis diffuse reflectance spectrum shows that the band gap of the barium bismuthate microrods is 1.42 eV which has strong absorption ability in the visible light region. The phtocatalytic activity of the barium bismuthate microrods has been evaluated by the photocatalytic removal of gentian violet under natural solar light irradiation in aqueous solution. Gentian violet with a concentration of 10 mg · L−1 can be totally removed by 10 mg barium bismuthate microrods in 10 mL aqueous solution.


*Correspondence address, Dr. Yong Zhang, Fujian Provincial Key Laboratory of Functional Materials and Applications, Xiamen University of Technology, Xiamen, Fujian 361024, P.R. China, Tel.: +86592-6291323, Fax: +86592-6291323, E-mail: ,
** Dr. Lizhai Pei, School of Materials Science and Engineering, Anhui University of Technology, Ma'anshan, Anhui 243002, P.R. China, Tel.: +865552311570, Fax: +865552311570, E-mail:

References

[1] S.Shabbir, M.Faheem, Y.H.Wu: J. Clean. Prod.170 (2018) 425. 10.1016/j.jclepro.2017.09.085Search in Google Scholar

[2] F.Shojaeipoor, B.Masoumi, B.H.Banakar, J.Rastegar: Chin. J. Chem. Eng.25 (2017) 1294. 10.1016/j.cjche.2016.09.003Search in Google Scholar

[3] L.Aref, A.H.Navarchian, D.Dadkhah: J. Polym. Environ.25 (2017) 628. 10.1007/s10924-016-0842-zSearch in Google Scholar

[4] F.A.Pavan, E.S.Camacho, E.C.Lima, G.L.Dotto, V.T.A.Branco, S.L.P.Dias: J. Environ. Chem. Eng.2 (2014) 230. 10.1016/j.jece.2013.12.017Search in Google Scholar

[5] E.Hu, S.Shang, X.M.Tao, S.Jiang, K.I.Chiu: J. Clean. Prod.137 (2016) 1055. 10.1016/j.jclepro.2016.07.194Search in Google Scholar

[6] G.K.Parshetti, S.G.Parshetti, A.A.Telke, D.C.Kalyani, R.A.Doong, S.P.Govindwar: J. Environ. Sci.23 (2011) 1384. 10.1016/S1001-0742(10)60547-5Search in Google Scholar

[7] Y.Q.Zhang, X.C.Wei, J.J.Long: J. Clean. Prod.133 (2016) 746. 10.1016/j.jclepro.2016.05.187Search in Google Scholar

[8] V.K.Gupta, R.Jain, A.Nayak, S.Agarwal, M.Shrivastava: Mat. Sci. Eng. C31 (2011) 1062. 10.1016/j.msec.2011.03.006Search in Google Scholar

[9] J.Y.Chen, J.W.Feng, S.S.Lu, Z.J.Shen, Y.L.Du, L.Peng, P.Nian, S.J.Yuan, A.Y.Zhang: Sep. Purif. Technol.191 (2018) 75. 10.1016/j.seppur.2017.09.016Search in Google Scholar

[10] H.Benhebal, M.Chaib, M.Crine, A.Leonard, S.D.Lambert: Chiang Mai J. Sci.43 (2016) 585. http://hdl.handle.net/2268/183963Search in Google Scholar

[11] N.Lin, L.Z.Pei, T.Wei, H.Y.Yu: Cryst. Res. Technol.50 (2015) 255. 10.1002/crat.201400461Search in Google Scholar

[12] C.Pan, J.Xu, Y.Chen, Y.Zhu: Appl. Catal. B: Environ.115–116 (2012) 314. 10.1016/j.apcatb.2011.12.030Search in Google Scholar

[13] J.Long, S.Wang, H.Chang, B.Zhao, B.Liu, Y.Zhou, W.Wei, X.Wang, L.Huang, W.Huang: Small10 (2014) 2791. PMid:24664483; 10.1002/smll.201302950Search in Google Scholar

[14] P.Zhang, J.Hu, J.Li: RSC Adv.1 (2011) 1072. 10.1039/C1RA00188DSearch in Google Scholar

[15] L.Z.Pei, T.Wei, N.Lin, H.Y.Yu: Int. J. Mater. Sci.107 (2016) 477. 10.3139/146.111364Search in Google Scholar

[16] K.E.Toghill, R.G.Compton: Electroanal.22 (2010) 1947. 10.1002/elan.201000072Search in Google Scholar

[17] B.Rasche, W.V.Broek, M.Ruck: Chem. Mater.28 (2016) 665. 10.1021/acs.chemmater.5b04496Search in Google Scholar

[18] L.Z.Pei, F.F.Lin, F.L.Qiu, W.L.Wang, Y.Zhang, C.G.Fan: Mater. Res. Express4 (2017) 075047. 10.1088/2053-1591/aa7e04Search in Google Scholar

[19] W.Wei, H.C.Jiang, Z.Zheng, Q.Q.Zhao, Q.Y.Wu, J.H.Zhan: Mater. Res. Bull.48 (2013) 1352. 10.1016/j.materresbull.2012.11.070Search in Google Scholar

[20] L.W.Lin, Y.H.Tang, C.S.Chen, H.F.Xu: CrystEngComm.12 (2010) 2975. 10.1039/b927384kSearch in Google Scholar

[21] L.W.Lin, Y.H.Tang, C.S.Chen: Nanotechnology20 (2009) 175601. 10.1088/0957-4484/20/17/175601Search in Google Scholar

[22] X.Y.Li, L.P.Wang, W.D.Shi, C.J.Song, D.B.Xu, J.J.Liu: RSC Adv.5 (2015) 66940. 10.1039/C5RA10709ASearch in Google Scholar

[23] L.W.Lin, X.Y.Sun, Y.Jiang, Y.H.He: Nanoscale5 (2013) 12518. 10.1039/c3nr04185aSearch in Google Scholar

[24] M.Saiduzzaman, S.Yanagida, T.Takei, C.Moriyoshi, Y.Kuroiwa, N.Kumada: ChemistrySelect2 (2017) 4843. 10.1002/slct.201700973Search in Google Scholar

[25] N.Kumada: J. Ceram. Soc.121 (2013) 135. 10.2109/jcersj2.121.135Search in Google Scholar

[26] N.Kumada, M.H.K.Rubel, A.Miura, T.Takei: J. Ceram. Soc.122 (2014) 307. 10.2019/jcersj2.122.307Search in Google Scholar

[27] T.Takei, R.Haramoto, Q.Dong, N.Kumada, Y.Yonesaki, N.Kinomura, T.Mano, S.Nishimoto, Y.Kameshima, M.Miyake: J. Solid State Chem.184 (2011) 2017. 10.1016/j.jssc.2011.06.004Search in Google Scholar

[28] Y.L.Liu, S.Yang, Y.Lu, N.V.Podval'naya, W.Chen, G.S.Zakharova: Appl. Surf. Sci.359 (2015) 114. 10.1016/j.apsusc.2015.10.071Search in Google Scholar

[29] J.C.Fan, T.F.Li, H.Heng: Appl. Phys. A119 (2015) 185. 10.1007/s00339-014-8946-6Search in Google Scholar

[30] Y.X.Li, Y.F.Hu, S.Q.Peng, G.X.Lu, S.B.Li: J. Phys. Chem.C113 (2009) 9352. 10.1021/jp901505jSearch in Google Scholar

[31] H.O.V.Almjasheva, T.A.Denisova: Russ. J. Gen. Chem.87 (2017) 1. 10.1134/S1070363217010017Search in Google Scholar

[32] L.Z.Pei, L.J.Yang, Y.P.Dong, J.F.Wang, C.G.Fan, J.Chen, W.Y.Yin, Q.F.Zhang: Cryst. Res. Technol.45 (2010) 1087. 10.1002/crat.201000278Search in Google Scholar

[33] C.Han, M.Pelaez, V.Likodimos, A.G.Kontos, P.Falaras, K.O’Shea, D.D.Dionysioua: Appl. Catal. B: Environ.107 (2011) 77. 10.1016/j.apcatb.2011.06.039Search in Google Scholar

[34] M.Pelaez, P.Falaras, V.Likodimos, A.Kontos, A.A.D.L.Cruz, K.O’Shea, D.D.Dionysiou: Appl. Catal. B: Environ.99 (2010) 378. 10.1016/j.apcatb.2010.06.017Search in Google Scholar

[35] H.B.Fu, C.S.Pan, W.Q.Yao, Y.F.Zhu: J. Phys. Chem. B109 (2005) 22432. 10.1021/jp052995jSearch in Google Scholar

[36] G.M.Liu, X.Z.Li, J.C.Zhao, S.Horikoshi, H.Hidaka: J. Mol. Catal. A: Chem.153 (2000) 221. 10.1016/S1381-1169(99)00351-9Search in Google Scholar

[37] R.W.Matthews, S.R.Mcevoy: J. Photoch. Photobio. A64 (1992) 231. 10.1016/1010-6030(92)85110-GSearch in Google Scholar

Received: 2018-04-23
Accepted: 2018-06-28
Published Online: 2018-10-30
Published in Print: 2018-11-12

© 2018, Carl Hanser Verlag, München