Accessible Requires Authentication Published by De Gruyter October 30, 2018

The effect of Al2O3 reinforcement particles on the corrosion behavior of Al(Zn) solid solution matrix

M. Oraei, H. Mostaan and M. Rafiei


Aluminum metal matrix composites are the fastest developing materials for structural applications due to their superior properties. In this study, Al(Zn)/Al2O3 nanocomposite and also Al(Zn) solid solution were fabricated successfully using mechanochemical synthesis and spark plasma sintering. The structural evolution of the powder particles after different milling times was studied by X-ray diffraction analysis. Also, the corrosion behavior of Al(Zn)/Al2O3 metal matrix nanocomposite was evaluated and compared with that of nanocrystalline Al(Zn) alloy. The nanocomposite had been prepared via mechanochemical reaction between zinc oxide and aluminum powder mixture derived from a high-energy ball milling process. The results showed that the Al(Zn)/Al2O3 nanocomposite is formed after 40 h of milling time. Also, it was found that the polarization resistance of the sample containing Al2O3 is significantly higher (more than 67 times) than that of nanocrystalline Al(Zn) alloy (sample without Al2O3).

*Correspondence address, Hossein Mostaan, Faculty of Engineering, Department of Materials and Metallurgical Engineering, Arak University, Arak 38156-8-8349, Iran, Tel.: +989183498272, Fax: +988632625526, E-mail:


[1] K.Park, J.Park, H.Kwon: J. Alloys Compd.739 (2018) 311. 10.1016/j.jallcom.2017.12.054 Search in Google Scholar

[2] K.Ravikumar, K.Kiran, V.S.Sreebalaji: J. Alloys Compd.723 (2017) 795. 10.1016/j.jallcom.2017.06.309 Search in Google Scholar

[3] N.Gangil, A.N.Siddiquee, S.Maheshwari: J. Alloys Compd.715 (2017) 91. 10.1016/J.JALLCOM.2017.04.309 Search in Google Scholar

[4] X.Qu, F.Wang, C.Shi, N.Zhao, E.Liu, C.He, F.He: Mater. Sci. Eng. A.709 (2018) 223. 10.1016/j.msea.2017.10.063 Search in Google Scholar

[5] U.Pandey, R.Purohit, P.Agarwal, S. KumarSingh: Mater. Today Proc.5 (2018) 4106. 10.1016/j.matpr.2017.11.671 Search in Google Scholar

[6] B.Almangour, D.Grzesiak, J.Yang: Powder Technol.326 (2018) 467. 10.1016/j.powtec.2017.11.064 Search in Google Scholar

[7] Y.Afkham, R.Azari, S.Rahimpour: Arch. Civ. Mech. Eng.18 (2017) 215. 10.1016/j.acme.2017.06.011 Search in Google Scholar

[8] S.Tjong, Z.Ma: Mater. Sci. Eng. R Reports.29 (2000) 49. 10.1016/S0927-796X(00)00024-3 Search in Google Scholar

[9] M.Krasnowski, T.Kulik: Scr. Mater.57 (2007) 553. 10.1016/j.scriptamat.2007.04.031 Search in Google Scholar

[10] C.Suryanarayana: Prog. Mater. Sci.46 (2001) 1. 10.1016/S0079-6425(99)00010-9 Search in Google Scholar

[11] A.Maleki, N.Hosseini, B.Niroumand: Ceram. Int.44 (2018) 10. 10.1016/j.ceramint.2017.09.168 Search in Google Scholar

[12] T.C.Makoto Kobashi: J. Japan Inst. Light Met.42 (1992) 138. 10.2464/jilm.42.138 Search in Google Scholar

[13] M.Tavoosi, F.Karimzadeh, M.H.Enayati, A.Heidarpour: J. Alloys Compd.475 (2009) 198. 10.1016/j.jallcom.2008.07.049 Search in Google Scholar

[14] T.G.Durai, K.Das, S.Das: J. Alloys Compd.462 (2008) 410. 10.1016/j.jallcom.2007.08.073 Search in Google Scholar

[15] I.S.El-Mahallawi, K.Eigenfield, F.H.Kouta, A.Hussein, T.S.Mahmoud, R.M.Ragaie, A.Y.Shash, W.Abou-Al-Hassan: Proceeding 2nd Multifunct. Nanocomposites Nanomater. Int. Conf. Exhib., Sharm El Sheikh, 2008. Search in Google Scholar

[16] T.Samir, E.Y.El-kady, A.Saad, M.Al-shihiri: Mater. Res.15 (2012) 903. 10.1590/S1516-14392012005000113 Search in Google Scholar

[17] U.Köster, D.Zander: Mater. Sci. Eng.A 357–377 (2004) 53. 10.1016/j.msea.2003.10.230 Search in Google Scholar

Received: 2018-04-07
Accepted: 2018-06-28
Published Online: 2018-10-30
Published in Print: 2018-11-12

© 2018, Carl Hanser Verlag, München