Accessible Unlicensed Requires Authentication Published by De Gruyter October 30, 2018

The effect of the cooling rate on the course of oxidation of gamma titanium aluminide alloy

Joanna Małecka

Abstract

This paper presents the results of an investigation on the oxidation damage mechanisms of the intermetallic alloy Ti-46Al-7Nb-0.7Cr-0.1Si-0.2Ni. The oxidation was carried out in air at two temperatures: 900 °C and 925 °C. The effects of temperature and cooling rate were taken into consideration. It is also determined that the mass gain of the oxidized alloy is slightly higher when cooling is performed at a higher rate.


*Correspondence address, Joanna Małecka, Opole University of Technology Faculty of Mechanical Engineering, Mikołajczyka 5 Street, 45-271 Opole, Poland, Tel.: +48 774498466, Fax: +48774499927, E-mail:

References

[1] H.Clemens, H.Kestler: Adv. Eng. Mater.2/9 (2000) 551. 10.1002/1527-2648(200009)2:9%3C551::AID-ADEM551%3E3.0.CO;2-USearch in Google Scholar

[2] E.A.Loria: Intermet.8 (2000) 13391345. 10.1016/S0966-9795(00)00073-XSearch in Google Scholar

[3] F.Appel, M.Oehring, R.Wagner: Intermet.8 (2000) 1283. 10.1016/S0966-9795(00)00036-4Search in Google Scholar

[4] ASMHandbook, vol.3. Alloy Phase Diagrams, Metal treatment, Structure and Joining Collection. Section: Binary Alloy Phase Diagrams, Standard Content, (1998).Search in Google Scholar

[5] P.KOFSTAD: J. Phys. Chem. Solids23 (1962) 1579. 10.1016/0022-3697(62)90240-8Search in Google Scholar

[6] A.E.Jenkins: J. Inst. Met.84 (1955) 19.Search in Google Scholar

[7] S.Anderson, A.D.Wedsley: Nature211 (1966) 581. 10.1038/211581a0Search in Google Scholar

[8] M.Yoshihara, Y.W.Kim: Intermet.13 (2005) 952. 10.1016/j.intermet.2004.12.007Search in Google Scholar

[9] Y.Shen, X.Ding, F.Wang: J. Mater. Sci.39 (2004) 6583. 10.1023/B:JMSC.0000044899.40687.a6Search in Google Scholar

[10] R.J.Hanraham, D.P.Butt: Oxid. Met.47 (1997) 317. 10.1007/BF01668517Search in Google Scholar

[11] S.K.Varma, A.Chan, B.N.Mahapatra: Oxid. Met.55 (2001) 423. 10.1023/A:1010351613733Search in Google Scholar

[12] J.M.Rakowski, F.S.Pettit and G.H.Meier: Scripta Mater.35/12 (1996) 1417. 10.1016/S1359-6462(96)00315-6Search in Google Scholar

[13] C.E.Lowell, D.L.Deadmore: Oxid. Met.14 (1980) 325. 10.1007/BF00603788Search in Google Scholar

[14] M.Yoshihara, Y.W.Kim: in Gamma Titanium Aluminides (2003) 559.Search in Google Scholar

[15] H.Clemens, F.Appel, R.Bartels, H.Baur, H.Gerling, V.Güther, H.Kestler: in Ti-2003 Science and TechnologyIV (2004) 2123.Search in Google Scholar

[16] P.Kofstad, P.B.Anderson, O.J.Krudtaa: J. Less-Common Met.3 (1961) 89. 10.1016/0022-5088(61)90001-7Search in Google Scholar

[17] A.Evans, A.Rana: Acta Mater.28 (1980) 129. 10.1016/0001-6160(80)90062-0Search in Google Scholar

[18] F.N.Rhines, J.S.Wolf: Metal. Trans.1/6 (1970) 1701. 10.1007/BF02642020Search in Google Scholar

[19] D.Clarke: Acta Mater.51 (2003) 1393. 10.1016/S1359-6454(02)00532-3Search in Google Scholar

[20] J.Allpress, A.Wadsley: J. Solid State Chem.1 (1969) 28. 10.1016/0022-4596(69)90005-XSearch in Google Scholar

Received: 2018-02-27
Accepted: 2018-06-01
Published Online: 2018-10-30
Published in Print: 2018-11-12

© 2018, Carl Hanser Verlag, München