Accessible Requires Authentication Published by De Gruyter October 30, 2018

Low-temperature sintering of 0.96(K0.5Na0.5)NbO3-0.04LiNbO3 lead-free piezoelectric ceramics modified with CuO

Phan Dinh Gio, Huynh Quang Viet and Le Dai Vuong

Abstract

In this study, 0.96(K0.5Na0.5)NbO3-0.04LiNbO3 (KNLN) + xwt.%CuO piezoelectric ceramics, where x = 0.0, 0.1, 0.2, 0.25, and 0.30, have been successfully fabricated using the conventional solid-state reaction method. The effect of CuO on the sintering behavior, structure, microstructure, and electrical properties of KNLN ceramics was studied. The addition of CuO reduced the sintering temperature of the ceramics from 1 050 °C to 950 °C. The experimental results showed that with CuO doping, the KNLN ceramics can be well sintered at a low temperature and show a dense, pure perovskite structure. At a sintering temperature of 950 °C and CuO content of 0.25 wt.%, the best physical properties of the ceramics, such as density (ρ), 4.14 g cm−3; electromechanical coupling factors (kp), 0.33 and (kt), 0.43; dielectric constant (), 349; dielectric loss (tanδ), 0.008; mechanical quality factor (Qm), 133; and piezoelectric constant (d33), 130 pC N−1, were obtained.


*Correspondence address, Phan Dinh Gio, Department of Physics, College of Sciences, Hue University, 77 Nguyen Hue Str., Hue City, Vietnam, Tel.: +84905156253, E-mail:

References

[1] L.D.Vuong, P.D.Gio, N.T.ThoT.V.Chuong: Indian J. Eng. Mater. Sci.20 (2013) 555560. Search in Google Scholar

[2] L.D.Vuong, N.T.Tho: Int. J. Mater. Res.108 (2017) 222227. 10.3139/146.111465 Search in Google Scholar

[3] L.D.Vuong, P.D.Gio: Journal of Modern Physics5 (2014) 12581263. 10.4236/jmp.2014.514126 Search in Google Scholar

[4] L.D.Vuong, N.Truong-Tho: J. Electron. Mater.46 (2017) 63956402. 10.1007/s11664-017-5665-8 Search in Google Scholar

[5] P.D.Gio, N.V.D.Hong, L.D.Vuong: Advanced Porous Materials3 (2015) 2932. 10.1166/apm.2015.1093 Search in Google Scholar

[6] H.E.Mgbemere, M.Hinterstein, G.A.Schneider: J. Appl. Crystallography44 (2011) 10801089. 10.1107/S0021889811027701 Search in Google Scholar

[7] P.Panda: J. Mater. Sci.44 (2009) 50495062. 10.1007/s10853-009-3643-0 Search in Google Scholar

[8] G.A.Smolensky: Sov. Phys.-Solid State2 (1961) 26512654. Search in Google Scholar

[9] E.Subbarao: J. Am. Ceram. Soc.45 (1962) 166169. 10.1111/j.1151-2916.1962.tb11113.x Search in Google Scholar

[10] T.Takeuchi, T.Tani, Y.Saito: Jpn. J. Appl. Phys.38 (1999) 5553. 10.1109/ULTSYM.2008.0347 Search in Google Scholar

[11] T.Huang, D.Q.Xiao, W.F.Liang, J.G.Wu, Z.Wang, J.G.Zhu: Ferroelectrics458 (2014) 3742. 10.1080/00150193.2013.849978 Search in Google Scholar

[12] S.Zhang, R.Xia, T.R.Shrout, G.Zang, J.Wang: J. Appl. Phys.100 (2006) 104108. 10.1063/1.2382348 Search in Google Scholar

[13] L.Egerton, D.M.Dillon: J. Am. Ceram. Soc.42 (1959) 438442. 10.1111/j.1151_2916.1959.tb12971.x Search in Google Scholar

[14] F.Fu, J.Zhai, Z.Xu, B.Shen, X.Yao: Bull. Mater. Sci.37 (2014) 779787. 10.1007/s12034-014-0006-5 Search in Google Scholar

[15] Y.Guo, K.-i.Kakimoto, H.Ohsato: Appl. Phys. Lett.85 (2004) 41214123. 10.1063/1.1813636 Search in Google Scholar

[16] K.Wang and J.-F.Li: J. Adv. Ceram.1 (2012) 2437. 10.1007/s40145-012-0003-3 Search in Google Scholar

[17] K.Kato, K.-i.Kakimoto, K.Hatano, K.Kobayashi, Y.Doshida: J. Ceram. Soc. Jap.122 (2014) 460463. 10.2109/jcersj2.122.P6-1 Search in Google Scholar

[18] P.D.Gio, N.T.K.Lien: Ind. J. Sci. Res. and Tech.3 (2015) 4853. Search in Google Scholar

[19] S.H.Park, C.W.Ahn, S.Nahm, J.S.Song: Jpn. J. Appl. Phys.43 (2004) L1072. 10.1143/JJAP.43.L1072 Search in Google Scholar

[20] N.B.Do, H.D.Jang, I.Hong, H.S.Han, D.T.Le, W.P.Tai, J.S.Lee: Ceram. Inter.38 (2012) S359S362. 10.1016/j.ceramint.2011.05.012 Search in Google Scholar

[21] P.D.Gio, L.D.Vuong, H.T.T.Hoa: J. Mater. Sci. and Chem. Eng.2 (2014) 2027. 10.4236/msce.2014.211004 Search in Google Scholar

[22] J.H.Kim, D.H.Kim, I.T.Seo, J.Hur, J.H.Lee, B.Y.Kim, S.Nahm: Sensors and Actuators A: Physical234 (2015) 916. 10.1016/j.sna.2015.08.015 Search in Google Scholar

[23] I.Y.Kang, I.T.Seo, Y.J.Cha, J.H.Choi, S.Nahm, T.H.Sung, J.H.Paik: J. Eur. Ceram. Soc.32 (2012) 23812387. 10.1016/j.jeurceramsoc.2012.01.030 Search in Google Scholar

[24] M.Matsubara, K.Kikuta, S.Hirano: J. Appl. Phys.97 (2005) 114105. 10.1063/1.1926396 Search in Google Scholar

[25] D.Wan, Y.Yang, Q.Li, K.Zhu, Ultrasonics Symposium, (2008). IEEE. 14291432. 10.1109/ULTSYM.2008.0347pp Search in Google Scholar

[26] H.Y.Park, J.Y.Choi, M.K.Choi, K.H.Cho, S.Nahm, H.G.Lee, H.W.Kang: J. Amer. Ceram. Soc.91 (2008) 23742377. 10.1111/j.1551-2916.2008.02408.x Search in Google Scholar

[27] Y.Zhao, Y.Zhao, R.Huang, R.Liu, H.Zhou: J. Eur. Ceram. Soc.31 (2011) 19391944. 10.1016/j.jeurceramsoc.2011.04.018 Search in Google Scholar

[28] I.T.Seo, K.H.Cho, H.Y.Park, S.J.Park, M.K.Choi, S.Nahm, H.G.Lee, H.W.Kang, H.J.Lee: J. Amer. Ceram. Soc.91 (2008) 39553960. 10.1111/j.1551-2916.2008.02767.x Search in Google Scholar

[29] G.Ray, N.Sinha, B.Kumar: Mater. Chem. and Phys.142 (2013) 619625. 10.1016/j.matchemphys.2013.08.006 Search in Google Scholar

[30] E.Li, H.Kakemoto, S.Wada, T.Tsurumi: J. Amer. Ceram. Soc.90 (2007) 17871791. 10.1111/j.1551-2916.2006.01465.x Search in Google Scholar

[31] F.Azough, M.Wegrzyn, R.Freer, S.Sharma, D.Hall: J. Eur. Ceram. Soc.31 (2011) 569576. 10.1016/j.jeurceramsoc.2010.10.033 Search in Google Scholar

Received: 2018-03-09
Accepted: 2018-06-28
Published Online: 2018-10-30
Published in Print: 2018-11-12

© 2018, Carl Hanser Verlag, München