Abstract
This study focuses on development of Nickel–Yttira Stabilized Zirconia (Ni/YSZ) based anode material by solid-state synthesis using polyvinyl alcohol (PVA) in varying weight concentrations (3 wt.% and 6 wt.%) both as a binder and as a pore-former. Scanning electron microscopy and X-ray diffraction based structural and morphological analyses were performed and the synthesis of a homogeneous NiO/YSZ phase was confirmed after sintering at 1 000 °C. Microscopic study investigating effects of PVA concentration upon pore density in pellets pressed under the same conditions was conducted. Thermo-gravimetric/differential thermal analysis of the powders pre-dried at around 120 °C was carried out up to 1 000 °C to investigate the phase change and the thermal decomposition behavior. Findings on reduction of NiO/YSZ in a mixed atmosphere of H2/Ar at 550 °C are also discussed in detail. The results demonstrated that areal porosity of 12 % and 24 % was achieved with 3 wt.% and 6 wt.% of PVA, respectively.
References
[1] https://www.eia.gov/outlooks/aeo/pdf/0383(2017).pdf.Search in Google Scholar
[2] http://www.eia.doe.gov/oiaf/aeo/.Search in Google Scholar
[3] J.Huang, Z.Li, J.Zhang: Front. Energy Res.11 (2017) 334–364. 10.1007/s11708-017-0490-6Search in Google Scholar
[4] S.Hossain, A.M.Abdalla, S.Noorazean, B.Jamain, J.H.Zaini, A.K.Azad: Renew. Sustain. Energy Rev.79 (2017) 750–764. 10.1016/j.rser.2017.05.147Search in Google Scholar
[5] M.Cassidy. WIREs Energy Environ2017, 6:e248. 10.1002/wene.248Search in Google Scholar
[6] F.Ramadhani, M.A.Hussain, H.Mokhlis, S.Hajimolana: Renew. Sustain. Energy Rev.76 (2017) 460–484. 10.1016/j.rser.2017.03.052Search in Google Scholar
[7] K.Pan, A.M.Hussain, E.D.Wachsman: J. Power Sources.347 (2017) 277–282. 10.1016/j.jpowsour.2017.02.019Search in Google Scholar
[8] C.Yik, W.Yin, K.Shyuan, A.Bakar: Renew. Sustain. Energy Rev.79 (2017) 794–805. 10.1016/j.rser.2017.05.154Search in Google Scholar
[9] M.Kishimoto, Y.Kawakami, Y.Otani, H.Iwai, H.Yoshida: Scr. Mater.140 (2017) 5–8. 10.1016/j.scriptamat.2017.06.054Search in Google Scholar
[10] C.Li, H.Yi, D.Lee: J. Power Sources.309 (2016) 99–107. 10.1016/j.jpowsour.2016.01.080Search in Google Scholar
[11] N.Hedayat, Y.Du, H.Ilkhani: Renew. Sustain. Energy Rev.77 (2017) 1221–1239. 10.1016/j.rser.2017.03.095Search in Google Scholar
[12] Y.Wang, J.Yuan, B.Sundén, Y.Hu: J. Power Sources.254 (2014) 209–217. 10.1016/j.jpowsour.2013.12.079Search in Google Scholar
[13] F.H.Wang, R.S.Guo, Q.T.Wei, Y.Zhou, H.L.Li, S.L.Li: Mater. Lett.58 (2004) 3079–3083. 10.1016/j.matlet.2004.05.047Search in Google Scholar
[14] M.Boaro, J.M.Vohs, R.J.Gorte: J. Am. Ceram. Soc.86 (2003) 395–400. 10.1111/j.1151-2916.2003.tb03311.xSearch in Google Scholar
[15] B.A.Horri, C.Selomulya, H.Wang: Int. J. Hydrogen Energy37 (2012) 15311–15319. 10.1016/j.ijhydene.2012.07.108Search in Google Scholar
[16] J.Hu, K.Chen, X.Huang, N.Ai, X.Du, C.Fu, J.Wang, W.Su: J. Memb. Sci.318 (2008) 445–451. 10.1016/j.memsci.2008.03.008Search in Google Scholar
[17] C.Jin, J.Liu, L.Li, Y.Bai: J. Memb. Sci.341 (2009) 233–237. 10.1016/j.memsci.2009.06.012Search in Google Scholar
[18] L.Mingyi, Y.Bo, X.Jingming, C.Jing: Int. J. Hydrogen Energy35 (2010) 2670–2674. 10.1016/j.ijhydene.2009.04.027Search in Google Scholar
[19] E.W.Park, H.Moon, M.S.Park, S.H.Hyun: Int. J. Hydrogen Energy34 (2009) 5537–5545. 10.1016/j.ijhydene.2009.04.060Search in Google Scholar
[20] A.Sanson, P.Pinasco, E.Roncari: J. Eur. Ceram. Soc.28 (2008) 1221–1226. 10.1016/j.jeurceramsoc.2007.10.001Search in Google Scholar
[21] T.Talebi, M.H.Sarrafi, M.Haji, B.Raissi, A.Maghsoudipour: Int. J. Hydrogen Energy.35 (2010) 9440–9447. 10.1016/j.ijhydene.2010.04.156Search in Google Scholar
[22] V.M.Orera, M.A.Laguna-bercero, A.Larrea: Front. Energy Res.2 (2014) 1–13. 10.3389/fenrg.2014.00022Search in Google Scholar
[23] S.Amiri, M.H.Paydar: J. Alloys Compd.735 (2017) 172–183. 10.1016/j.jallcom.2017.11.067Search in Google Scholar
[24] W.Pan, W.Pan, Z.Lü, K.Chen, X.Huang, B.Wei, W.Li, Z.Wang, W.Su: Electrochim. Acta.55 (2010) 5538–5544. 10.1016/j.electacta.2010.04.037Search in Google Scholar
[25] T.A.G.Restivo, S.R.H.Mello-Castanho: Int. J. Mater. Res.101 (2010) 128–132. 10.3139/146.110248Search in Google Scholar
[26] M.Miyake, S.Matsumoto, M.Iwami, S.Nishimoto, Y.Kameshima: Int. J. Hydrogen Energy.41 (2016) 13625–13631. 10.1016/j.ijhydene.2016.05.070Search in Google Scholar
[27] B.S.Prakash, S.S.Kumar, S.T.Aruna: Renew. Sustain. Energy Rev.36 (2014) 149–179. 10.1016/j.rser.2014.04.043Search in Google Scholar
[28] M.Tanhaei, M.Mozammel, E.Javanshir, N.N.Ilkhechi: Int. J. Mater. Res.108 (2017) 857–863. 10.3139/146.111544Search in Google Scholar
[29] N.Christiansen, J.B.Hansen, H.Holm-Larsen, M.J.Jorgensen, M.Wandel, P.V.Hendriksen, A.Hagen, S.Ramousse: ECS Trans.25 (2009) 133–142. 10.1149/1.3205518Search in Google Scholar
[30] M.Marinšek, K.Zupan, J.Maček: J. Power Sources.86 (2000) 383–389. 10.1016/S0378-7753(99)00425-5Search in Google Scholar
© 2018, Carl Hanser Verlag, München