Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter May 17, 2019

Mechanism of the effect of electron beam melting on the distribution of oxygen, nitrogen and carbon in silicon

Paper presented at the “2nd International Conference on Materials Science and Nanotechnology 2018, MSNANO-18”, 22–23 February 2018, Faisalabad, Pakistan

H M Noor ul Huda Khan Asghar, Muhammad Shahzad Shifa, Zaheer Abbas Gilani, Adnan Ali, Khalid Mahmood, Jalil ur Rehman, Muhammad Nuaman Usmani, Peng Wang, Shiqiang Qin Shuang Shi, Dachuan Jiang and Yi Tan

Abstract

Electron beam melting was utilized to investigate the behavior of carbon flow by melting 100 g of multi-crystalline silicon in an electron beam furnace for five minutes. Carbon and nitrogen are the constituent impurities in contaminated Si samples with an average weight of 13 % and 9, respectively. The electron beam melting experiment caused redistribution of the impurities along the periphery and bottom of the Si sample with a pie-shaped structure. Investigations through scanning electron microscopy and energy dispersive X-ray spectroscopy confirmed that the impurities were silicon nitride and silicon carbide. It was determined that Si3N4 has a rod-shaped microstructure, whereas SiC has a granular morphology. By segregating the impurities redistributed through this technique, pure Si was obtained in the remaining sample.


Correspondence address, Dr. Muhammad Shahzad Shifa, Nanao-ferrites Synthesis & Texture Analysis Lab, Department of Physics, Government College University, Faisalabad, Pakistan, Tell: +92 419201372, E-mail:

References

[1] X.F.Qi, Q.H.Yu, W.H.Zhao, X.Q.Liang, J.Zhang, L.J.Liu: Sol. Sol. Energy Mater. Sol. Cells130 (2014) 118123. 10.1016/j.solmat.2014.06.042Search in Google Scholar

[2] M.Stuckelberger, Y.Riesen, M.Despeisse, J.W.Schuttauf, F.J.Haug, C.Ballif: Appl. Phys.116 (2014) 094503. 10.1063/1.4894457Search in Google Scholar

[3] S.Q.Xiao, S.Y.Xu: Crit. Rev. Solid State Mater. Sci.39 (2014) 277317. 10.1080/10408436.2013.834245Search in Google Scholar

[4] F.Wolny, A.Krause, G.Fischer: Proceedings of the 4th International Conference on Crystalline Silicon Photovoltaics (Siliconpv 2014),55 (2014) 618623. 10.1016/j.egypro.2014.08.034Search in Google Scholar

[5] T.Matsui, M.Kondo: Sol. Energy Mater. Sol. Cells119 (2013) 156162. 10.1016/j.solmat.2013.05.056Search in Google Scholar

[6] H.M.N.U.K.Asghar, Z.A.Gilani, M.S.Awan, I.Ahmad, Y.Tan: Arab J. Sci. Eng.40 (2015) 263268. 10.1007/s13369-014-1483-ySearch in Google Scholar

[7] J.Safarian, G.Tranell, M.Tangstad: Energy Procedia20 (2012) 8897. 10.1016/j.egypro.2012.03.011Search in Google Scholar

[8] N.Yuge, M.Abe, K.Hanazawa, H.Baba, N.Nakamura, Y.Kato, Y.Sakaguchi, S.Hiwasa, F.Aratani: Prog. Photovoltaics Res. Appl.9 (2001), 203209. 10.1002/pip.372Search in Google Scholar

[9] Y.Kato, K.Hanazawa, H.Baba, N.Nakamura, N.Yuge, Y.Sakaguchi, S.Hiwasa, F.Aratani: Tetsu to Hagane/J. Iron Steel Inst. Jpn, 86 (2000), 717724. 10.2355/tetsutohagane1955.86.11_717Search in Google Scholar

[10] T.Shimpo, T.Yoshikawa, K.Morita: Metall. Mater. Trans. B35 (2004) 277284. 10.1007/s11663-004-0029-1Search in Google Scholar

[11] N.Yuge, H.Baba, Y.Sakaguchi, K.Nishikawa, H.Terashima, F.Aratani: Sol. Energy Mater. Sol. Cells,34 (1994) 243250. 10.1016/0927-0248(94)90046-9Search in Google Scholar

[12] N.Yuge, H.Baba, Y.Sakaguchi, K.Nishikawa, H.Terashima, F.Aratani: Adv. Mater.93 (1994), 597600. 10.1016/B978-1-4832-8381-4.50143-8Search in Google Scholar

[13] H.M.N.U.K.Asghar, Y.Tan, S.Shi, D.C.Jiang, S.Q.Qin, J.Liao, S.T.Wen, W.Dong, Y.Liu: Appl. Phys. A115 (2014) 753757. 10.1007/s00339-014-8367-6Search in Google Scholar

Received: 2018-03-24
Accepted: 2018-09-19
Published Online: 2019-05-17
Published in Print: 2019-05-15

© 2019, Carl Hanser Verlag, München