Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter February 25, 2019

Microstructure and oxidation of Ni–Fe2O3 composite coating on AISI 304 stainless steel

  • Mohsen Abaei , Morteza Zandrahimi and Hadi Ebrahimifar

Abstract

Protective coatings can be used to enhance the performance of interconnects in solid oxide fuel cells. In the present work, AISI 304 steel was coated with Ni–Fe2O3 composite from a modified Watt's type electrolyte by electroplating. The composite coating's microstructure and composition were investigated by scanning electron microscopy with energy dispersive X-ray spectroscopy and X-ray diffraction. Isothermal oxidation for 200 h in air at 850 °C converted the Ni–Fe2O3 composite coating to Fe2O3/NiFe2O4. The coating layer also decreased outward migration of chromium and the growth rate of a Cr2O3 layer, compared to an uncoated specimen.


Correspondence address, Morteza Zandrahimi, Department of Metallurgy and Materials Science, Faculty of Engineering, Shahid Bahonar University of Kerman, Jomhoori Eslami Blvd., 76169-133, Kerman, Iran. Tel: +983412114053, Fax: +983412111865., E-mail:

References

[1] D.Chatterjee, S.Biswas: Int. J. Hydrogen Energy36 (2011) 45304539. 10.1016/j.ijhydene.2010.04.114Search in Google Scholar

[2] S.P.Jiang, X.Chen: Int. J. Hydrogen Energy39 (2014) 505531. 10.1016/j.ijhydene.2013.10.042Search in Google Scholar

[3] E.Park, S.Taniguchi, T.Daio, J.T.Chou, K.Sasaki: Int. J. Hydrogen Energy39 (2014) 14631475. 10.1016/j.ijhydene.2013.11.030Search in Google Scholar

[4] S.J.Geng, J.H.Zhu, Z.G.Lu: Scr. Mater.55 (2006) 239242. 10.1016/j.scriptamat.2006.04.008Search in Google Scholar

[5] S.Geng, S.Qi, D.Xiang, S.Zhu, F.Wang: J. Power Sources215 (2012) 274278. 10.1016/j.jpowsour.2012.05.013Search in Google Scholar

[6] S.Geng, Y.Li, Z.Ma, L.Wang, L.Li, F.Wang: J. Power Sources195 (2010) 32563260. 10.1016/j.jpowsour.2009.12.007Search in Google Scholar

[7] L.Du, B.Xb, S.Dong, H.Yang, W.Tu: Wear257 (2004) 10581063. 10.1016/j.wear.2004.07.003Search in Google Scholar

[8] I.U.Haq, T.I.Khan: Surf. Coat. Technol.205 (2011) 28712875. 10.1016/j.surfcoat.2010.10.059Search in Google Scholar

[9] T.Lampke, A.Leopold, D.Dietrich, G.Alisch, B.Wielage: Surf. Coat. Technol.201 (2006) 35103517. 10.1016/j.surfcoat.2006.08.073Search in Google Scholar

[10] Y.Sun, I.F.Kabulska, J.Flis: Mater. Chem. Phys.145 (2014) 476483. https:10.1016/j.matchemphys.2014.02.051.Search in Google Scholar

[11] Y.J.Xue, H.B.Liu, M.M.Lan, J.S.Li, H.Li: Surf. Coat. Technol.204 (2010) 35393545. 10.1016/j.surfcoat.2010.04.009Search in Google Scholar

[12] Y.B.Zhou, J.F.Sun, S.C.Wang, H.J.Zhang: Corros. Sci.63 (2012) 351357. 10.1016/j.corsci.2012.06.019Search in Google Scholar

[13] P.Narasimman, M.Pushpavanam, V.M.Periasamy, Synthesis: Appl. Surf. Sci.258 (2011) 590598. 10.1016/j.apsusc.2011.08.038Search in Google Scholar

[14] N.Sombatsompop, K.Sukeemith, T.Markpin, N.Tareelap: Mater. Sci. Eng., A381 (2004) 175188. 10.1016/j.msea.2004.04.017Search in Google Scholar

[15] L.Benea, E.Danaila, J.P.Celis: Mater. Sci. Eng., A610 (2014) 106115. 10.1016/j.msea.2014.05.028Search in Google Scholar

[16] S.Spanou, A.I.Kontos, A.Siokou, A.G.Kontos, N.Vaenas, P.Falaras, E.A.Pavlatou: Electrochim. Acta105 (2013) 324332. 10.1016/j.electacta.2013.04.174Search in Google Scholar

[17] D.Thiemig, A.Bund: Surf. Coat. Technol.202 (2008) 29762984. 10.1016/j.surfcoat.2007.10.035Search in Google Scholar

[18] H.Gül, F.Kılıc, S.Aslan, A.Alp, H.Akbulut: Wear267 (2009) 976990. 10.1016/j.wear.2008.12.022Search in Google Scholar

[19] M.Alizadeh, M.Mirak, E.Salahinejad, M.Ghaffari, R.Amini, A.Roosta: J. Alloys Compd.611 (2014) 161166. 10.1016/j.jallcom.2014.04.181Search in Google Scholar

[20] K.H.Hou, M.D.Ger, L.M.Wang, S.T.Ke: Wear253 (2002) 9941003. 10.1016/S0043-1648(02)00222-3Search in Google Scholar

[21] S.Geng, S.Qi, Q.Zhao, S.Zhu, F.Wang: Int. J. Hydrogen Energy, 37 (2012) 1085010856. 10.1016/j.ijhydene.2012.04.043Search in Google Scholar

[22] M.Li, Z.Ke-chao, L.Zhi-you, W.Qiu-ping: J. Cent. S. Univ. Technol17 (2010) 708714. 10.1007/s11771-010-0544-ySearch in Google Scholar

[23] I.U.Haq, K.Akhtar, T.I.Khan, A.A.Shah: Surf. Coat. Technol.235 (2013) 691698. 10.1016/j.surfcoat.2013.08.048Search in Google Scholar

[24] R.K.Singh Raman, Rajeev K.Gupta: Corros. Sci.51 (2009) 316321. 10.1016/j.corsci.2008.10.020Search in Google Scholar

[25] W.J.Quadakkers, J.P.Abellan, V.Shemet, L.Singheiser: Mater. High Temp.20 (2003) 115127. 10.1179/mht.2003.015Search in Google Scholar

[26] P.Jian, L.Jian, H.Bing, G.Xie: J. Power Sources158 (2006) 354360. 10.1016/j.jpowsour.2005.09.056Search in Google Scholar

[27] A.C.Soares Sabionia, A.M.Huntzb, E.C.da Luza, M.Mantel, C.Haut: Mater. Res.6 (2003) 179185. 10.1590/S1516-14392003000200012Search in Google Scholar

[28] V.Kumar, N.Arora: Procedia Mater. Sci.5 (2014) 7685. 10.1016/j.mspro.2014.07.244Search in Google Scholar

[29] L.Cooper, S.Benhaddad, A.Wood, D.G.Ivey: Journal of power sources184 (2008) 220228. 10.1016/j.jpowsour.2008.06.010Search in Google Scholar

[30] A.Petric, H.Ling: J. Am. Ceram. Soc.90 (2007) 15151520. 10.1111/j.1551-2916.2007.01522.xSearch in Google Scholar

[31] E.N'Dah, S.Tsipas, M.P.Hierro, F.J.Pérez: Corros. Sci.49 (2007) 38503865. 10.1016/j.corsci.2007.05.011Search in Google Scholar

[32] S.Molin, B.Kusz, M.Gazda, P.Jasinski: J. Power Sources181 (2008) 3137. 10.1016/j.jpowsour.2007.10.009Search in Google Scholar

[33] M.Stanislowski, J.Froitzheim, L.Niewolak, W.J.Quadakkers, K.Hilpert, T.Markus, L.Singheiser: J. Power Sources, 164 (2007) 578589. 10.1016/j.jpowsour.2006.08.013Search in Google Scholar

[34] R.E.Lobnig, H.P.Schmidt, K.Hennesen, H.J.Grabke: Oxid. Met.37 (1992) 8193. DOI: https://doi.org/10.1007/BF00665632. 10.1007/BF00665632Search in Google Scholar

[35] T.Brylewski, M.Nanko, T.Maruyama, K.Przybylski: Solid State Ionics143 (2001) 131150. 10.1016/S0167-2738(01)00863-3Search in Google Scholar

[36] Jyh-WeiLee, Jenq-GongDuh: Surface and Coatings Technology177–178 (2004) 525531. 10.1016/j.surfcoat.2003.08.031Search in Google Scholar

[37] N.Birks, G.H.Meier, and F.S.Pettit: 2nd Edition, Cambridge University Press2006. 10.1017/CBO9781139163903Search in Google Scholar

[38] H.Ebrahimifar, M.Zandrahimi: Ionics18 (2012) 615624. 10.1007/s11581-012-0664-5Search in Google Scholar

[39] T.Horita, Y.Xiong, K.Yamaji, N.Sakai, H.Yokokawa: J. Electrochem. Soc.150 (2003) 243247. 10.1149/1.1539498Search in Google Scholar

[40] H.Kurokawa, K.Kawamura, T.Maruyama: Solid State Ionics.168 (2004) 1321. 10.1016/j.ssi.2004.02.008Search in Google Scholar

[41] T.Horita, Y.Xiong, K.Yamaji, N.Sakai, H.Yokokawa: J. Power Sources118 (2003) 3543. 10.1016/S0378-7753(03)00058-2Search in Google Scholar

[42] Z.Yang, J.S.Hardy, M.S.Walker, G.Xia, S.P.Simner, J.W.Stevenson: J. Electrochem. Soc.151 (2004) 18251831. 10.1149/1.1797031Search in Google Scholar

[43] H.Kurokawa, C.P.Jacobson, L.C.DeJonghe, S.J.Visco: Solid State Ionics178 (2007) 287296. 10.1016/j.ssi.2006.12.010Search in Google Scholar

[44] N.Shaigan, W.Qu, D.G.Ivey, and W.Chen: J. Power Sources195 (2010) 15291542. 10.1016/j.jpowsour.2009.09.069Search in Google Scholar

[45] H.Ebrahimifar, M.Zandrahimi: Oxid. Met.84 (2015) 329344. 10.1007/s11085-015-9557-0Search in Google Scholar

[46] H.Ebrahimifar, M.Zandrahimi: Oxid. Met.84 (2015) 129149. 10.1007/s11085-015-9547-2Search in Google Scholar

Received: 2018-07-22
Accepted: 2018-09-11
Published Online: 2019-02-25
Published in Print: 2019-03-13

© 2019, Carl Hanser Verlag, München

Downloaded on 10.6.2023 from https://www.degruyter.com/document/doi/10.3139/146.111740/html
Scroll to top button