Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter April 3, 2019

Synthesis of SnO/SnO2 microsphere photocatalysts by ultrasonic reaction

  • Baoyan Liang , Wangxi Zhang , Yanli Zhang and Ruijie Zhang


SnO/SnO2 composites were synthesised through a simple solid-phase grinding-assisted ultrasonic reaction by using SnCl2 and NH4HCO3 as raw materials. Results showed that SnCl2 reacted with NH4HCO3 to form Sn6O4(OH)4 and NH4Cl through solid-phase grinding. Sn6O4(OH)4 was subsequently hydrolysed to SnO nanosheets. A small amount of SnO grains was transformed to SnO2. Different treatment processes played important roles in the composition, microstructural morphology and photocatalytic activity of SnO/SnO2 composites. The direct ultrasonication of ground products yielded microspheres comprising numerous SnO nanosheets and SnO2 nanoparticles with excellent visible photocatalytic properties, which can degrade 93.5% of methyl orange within 75 min.

Correspondence address, Dr. Wangxi Zhang, Materials & Chemical Engineering school, Zhongyuan University of Technology, Zhengzhou, 450007, P.R. China, Tel: +86 371 69975740, Fax: +86 371 69975740, e-mail:


[1] N.R.Khalid, A.Majid, M.B.Tahir: Ceram. Int.43 (2017) 1455214571. 10.1016/j.ceramint.2017.02.093Search in Google Scholar

[2] W.X.Li: J. Aus. Ceram. Soc.49 (2013) 4146.Search in Google Scholar

[3] B.J.Farner, A.Turolla, A.F.Piasecki, J.Y.Bottero, M.Antonelli, M.R.Wiesner: Langmuir33 (2017) 27702779. PMid:28238264; 10.1021/acs.langmuir.6b04116Search in Google Scholar PubMed PubMed Central

[4] S.T.Tan, A.A.Umar, A.Balouch: Ultrason. Sonochem.21 (2014) 754760. PMid:24184009; 10.1016/j.ultsonch.2013.10.009Search in Google Scholar PubMed

[5] A.Malathi, J.Madhavan, M.Ashokkumar, P.Arunachalam: Appl. Catal. A-Gen, 555 (2018) 4774,. 10.1016/j.apcata.2018.02.010Search in Google Scholar

[6] P.Pascariu, A.Airinei, N.Olaru: Ceram. Int.42 (2016) 67756781. 10.1016/j.ceramint.2016.01.054Search in Google Scholar

[7] H.M.Zhou, Z.Y.Li, X.Niu: Ceram. Int.42 (2016) 18171826. 10.1016/j.ceramint.2015.09.145Search in Google Scholar

[8] Y.K.Cui, F.P.Wang, M.Z.Iqbal, Z.Y.Wang, YanLi, J.H.Tu: Mater. Res. Bull.70 (2015) 784788. 10.1016/j.materresbull.2015.06.021Search in Google Scholar

[9] E.T.Cui, G.Y.Yu, H.T.Huang, Z.S.Li: Curr. Opin. Green. Sustain. Chem, 6 (2017) 4247,. 10.1016/j.cogsc.2017.05.009Search in Google Scholar

[10] X.Yu, J.J.Yang, K.H.Ye, X.H.Fu, Y.Zhu, Y.M.Zhang: Inorg. Chem. Commun.71 (2016) 4549,. 10.1016/j.inoche.2016.06.034Search in Google Scholar

[11] H.L.Nan, W.B.Wu, K.Feng, B.B.Shan, Y.S.Qiu, Y.X.Zhang: Int. J. Hydrogen. Energy42 (2017) 848857,. 10.1016/j.ijhydene.2016.10.135Search in Google Scholar

[12] K.Santhi, C.Rani, S.Karuppuchamy: J. Alloys Compd.662 (2016) 102107. 10.1016/j.jallcom.2015.12.007Search in Google Scholar

[13] J.Li, Q.M.Jia, K.L.Yao: Sci. Tech. Chem. Indus.25 (2017) 18.Search in Google Scholar

[14] B.Y.Liang, D.H.Han, C.H.Sun: Ceram. Int.44 (2018) 73157318. 10.1016/j.ceramint.2017.10.101Search in Google Scholar

[15] B.Liu, J.Ma, H.Zhao: Appl. Phys. A-mater.107 (2012) 437443. 10.1007/s00339-011-6736-ySearch in Google Scholar

[16] K.Anandan, V.Rajendran: Superlattice. Microst.85 (2015) 185197. 10.1016/j.spmi.2015.05.031Search in Google Scholar

Received: 2018-05-18
Accepted: 2018-11-05
Published Online: 2019-04-03
Published in Print: 2018-04-12

© 2019, Carl Hanser Verlag, München

Downloaded on 23.9.2023 from
Scroll to top button