Skip to content
BY 4.0 license Open Access Published by De Gruyter May 17, 2019

Relationship between the variation in transformation temperatures, resistivity and dislocation density during thermal cycling of Ni50Ti50 shape memory alloy

  • Alexey Sibirev , Natalia Resnina and Sergey Belyaev

Abstract

The aim of the present work is to find the relationship between a decrease in transformation temperature and an increase in dislocation density during thermal cycling of NiTi alloy. The resistivity is used as a measure of the dislocation density variation and it allows one to find a linear dependence of the increment in the transformation temperatures on the dislocation density variation starting with the fifth thermal cycle. It is found that the thermal cycling of NiTi alloy within a temperature range of 473 to 273 K is accompanied by less dislocation density variation than in a range of 413 to 273 K. The dependence of transformation temperatures on increase in dislocation density in the first five cycles is not linear, hence it is concluded that the dislocation density variation is not the unique reason for a decrease in transformation temperature during the thermal cycling of equiatomic NiTi alloy.


Correspondence address, Dr. Aleksei Sibirev, Saint-Petersburg State Universtity, Physical Mechanics department, 198504, Universitetsky prospekt, 28, St. Petersburg, Russia, Tel. +7 9062629671, e-mail:

References

[1] D.Stoeckel: Mater. Des.11 (1990) 302307. 10.1016/0261-3069(90)90013-ASearch in Google Scholar

[2] J. MohdJani, M.Leary, A.Subic, M.A.Gibson: Mater. Des.56 (2014) 10781113. 10.1016/j.matdes.2013.11.084Search in Google Scholar

[3] N.B.Morgan, C.M.Friend: J. Phys. IV Fr.11 (2001) Pr8–325Pr8–332. 10.1051/jp4:2001855Search in Google Scholar

[4] H.Tobushi, K.Date, K.Miyamoto: J. Solid Mech. Mater. Eng.4 (2010) 10941102. 10.1299/jmmp.4.1094Search in Google Scholar

[5] Y.Tong, B.Guo, F.Chen, B.Tian, L.Li: Scr. Mater.67 (2012) 14. 10.1016/j.scriptamat.2012.03.005Search in Google Scholar

[6] S.Belyaev, N.Resnina: Int. J. Mater. Res.104 (2013) 1117. 10.3139/146.110830Search in Google Scholar

[7] T.Tadaki, Y.Nakata, K.Shimizu: Trans. Japan Inst. Met.28 (1987) 883890. 10.2320/matertrans1960.28.120Search in Google Scholar

[8] W.Tang, R.Sandström: Mater. Des.14 (1993) 103113. 10.1016/0261-3069(93)90003-ESearch in Google Scholar

[9] K.S.Suresh, S.K.Bhaumik, S.Suwas: Mater. Lett.99 (2013) 150153. 10.1016/j.matlet.2013.03.014Search in Google Scholar

[10] K.C.Atli, I.Karaman, R.D.Noebe, H.J.Maier: Scr. Mater.64 (2010) 315318. 10.1016/j.scriptamat.2010.10.022Search in Google Scholar

[11] Y.Furuya, Y.C.Park: Nondestr. Test. Eval8–9 (1992) 541554. 10.1080/10589759208952731Search in Google Scholar

[12] K.C.Atli, I.Karaman, R.D.Noebe, D.Gaydosh: Mater. Sci. Eng. A560 (2013) 653666. 10.1016/j.msea.2012.10.009Search in Google Scholar

[13] B.Kockar, K.C.Atli, J.Ma, M.Haouaoui, I.Karaman, M.Nagasako, R.Kainuma: Acta Mater.58 (2010) 64116420. 10.1016/j.actamat.2010.08.003Search in Google Scholar

[14] S.Miyazaki, Y.Igo, K.Otsuka: Acta Met.34 (1986) 20452051. 10.1016/0001-6160(86)90263-4Search in Google Scholar

[15] N.Resnina, S.Belyaev: J. Alloys Compd.486 (2009) 304308. 10.1016/j.jallcom.2009.06.132Search in Google Scholar

[16] A.R.Pelton, G.H.Huang, P.Moine, R.Sinclair: Mater. Sci. Eng. A532 (2012) 130138. 10.1016/j.msea.2011.10.073Search in Google Scholar

[17] A.Sibirev, S.Belyaev, N.Resnina: Mater. Sci. Forum738–739 (2013) 372376. 10.4028/www.scientific.net/MSF.738-739.372Search in Google Scholar

[18] X.Wang, B.Verlinden, J. VanHumbeeck: Intermetallics62 (2015) 4349. 10.1016/j.intermet.2015.03.006Search in Google Scholar

[19] S.D.Prokoshkin, A.V.Korotitskiy, V.Brailovski, K.E.Inaekyan, S.M.Dubinskiy: Phys. Met. Metallogr.112 (2011) 170187. 10.1134/S0031918X11020244Search in Google Scholar

[20] T.Simon, A.Kröger, C.Somsen, A.Dlouhy, G.Eggeler: Acta Mater.58 (2010) 18501860. 10.1016/j.actamat.2009.11.028Search in Google Scholar

[21] P.G.McCormick, Y.Liu: Acta Metall. Mater.42 (1994) 24072413. 10.1016/0956-7151(94)90319-0Search in Google Scholar

[22] N.Zotov, M.Pfund, E.Polatidis, A.F.Mark, E.J.Mittemeijer: Mater. Sci. Eng. A682 (2017) 178191. 10.1016/j.msea.2016.11.052Search in Google Scholar

[23] K.Otsuka, X.Ren: Prog. Mater. Sci.50 (2005) 511678. 10.1016/j.pmatsci.2004.10.001Search in Google Scholar

[24] K.Gall, H.Maier: Acta Mater.50 (2002) 46434657. 10.1016/S1359-6454(02)00315-4Search in Google Scholar

[25] M.Kocer, F.Sachslehner, M.Müller, E.Schafler, M.J.Zehetbauer: Mater. Sci. Forum210–213 (1996) 133140. 10.4028/www.scientific.net/MSF.210-213.133Search in Google Scholar

[26] A.Kanaan, A.Mazloum, I.Sevostianov: Int. J. Eng. Sci.105 (2016) 2837. 10.1016/j.ijengsci.2016.04.012Search in Google Scholar

[27] K.F.Hane, T.W.Shield: Acta Mater,47 (1999) 26032617. 10.1016/S1359-6454(99)00143-3Search in Google Scholar

[28] R.Salzbrenner, M.Cohen: Acta Metall.27 (1979) 739748. 10.1016/0001-6160(79)90107-XSearch in Google Scholar

[29] P.Wollants, J.R.Roos, L.Delaey: Prog. Mater. Sci.37 (1993) 227288. 10.1016/0079-6425(93)90005-6Search in Google Scholar

[30] http://people.virginia.edu/∼lz2n/mse6020/notes/D-stress-energy.pdf.Search in Google Scholar

[31] http://www.mse.berkeley.edu/groups/morris/MSE205/Extras/dislocationplasticity.pdf.Search in Google Scholar

[32] B.Coluzzi, A.Biscarini, R.Campanella, G.Mazzolai, L.Trotta, F.M.Mazzolai: J. Alloys Compd.310 (2000) 300305. 10.1016/S0925-8388(00)00968-3Search in Google Scholar

Received: 2018-10-01
Accepted: 2018-11-19
Published Online: 2019-05-17
Published in Print: 2019-05-15

© 2019, Carl Hanser Verlag, München

This work is licensed under the Creative Commons Attribution 4.0 International License.

Downloaded on 28.3.2024 from https://www.degruyter.com/document/doi/10.3139/146.111755/html
Scroll to top button