Abstract
In recent years, topological crystalline insulators have attracted increased attention due to practical demands of tunable electronic, spin electronic and thermoelectric devices. As an important topological crystalline insulator, mono-crystalline SnTe octahedra with {111} dominated surfaces, were successfully synthesized on a large scale via a surfactant-free hydrothermal synthesis route in this work. Important controlling factors for phase and morphology, i.e. reaction temperature, reactant concentration and stoichiometric ratio, are discussed in detail. The results indicated that high temperature is favorable for forming pure phase, and excessive Sn suppresses the appearance of SnTe with octahedral morphology. Lower reactant concentration is beneficial to preparing uniform SnTe octahedra via the selective growth mechanism. Crystallographic characteristics of the SnTe octahedra were investigated using focused ion beam, electron backscattered diffraction and transmission electron microscopy analysis. The hexagonal-like micro-plate (cut from an octahedron) was confirmed as mono-crystalline by the corresponding three Euler angle maps, the Kikuchi diffraction pattern and selected-area diffraction. It can be further deduced from the multiple experimental results that surfaces of octahedral SnTe are dominated by {111} crystallographic planes and the average size is 1–3 μm. Controllable mono-crystalline octahedra would effectively promote the development of topological crystalline insulators and their micro devices.
References
[1] P.Sessi, D. DiSante, A.Szczerbakow, F.Glott, S.Wilfert: Science354 (2016) 1269 – 1273. 27940869; 10.1126/science.aah6233Search in Google Scholar
[2] K.Chang, J.Liu, H.Lin, N.Wang, K.Zhao, A.Zhang, F.Jin: Science353 (2016) 274 – 278. 27418506; 10.1126/science.aad8609Search in Google Scholar
[3] J.Shen, Y.Xie, J.J.Cha: Nano Lett.15 (2015) 3827 – 3832. 10.1021/acs.nanolett.5b00576Search in Google Scholar
[4] L.D.Zhao, X.Zhang, H.Wu: J. Am. Chem. Soc138 (2016) 2366 – 2373. 10.1021/jacs.5b13276Search in Google Scholar
[5] G.A.Fiete: Nat. Mater.11 (2012) 1003 – 1004. 23175043; 10.1038/nmat3473Search in Google Scholar
[6] T.H.Hsieh, H.Lin, J.Liu, W.Duan, A.Bansil, L.Fu: Nat. Commun3 (2012) 982(1 – 6). 22864575; 10.1038/ncomms1969Search in Google Scholar
[7] M.Safdar, Q.Wang, M.Mirza, J.He: Cryst. Growth. Des.14 (2014) 2502 – 2509. 10.1021/cg5002122Search in Google Scholar
[8] S.Safaei, P.Kacman, R.Buczko: Phys. Rev B88 (2013) 045305. 10.1103/PhysRevB.88.045305Search in Google Scholar
[9] J.Liu, W.Duan, L.Fu: Phys. Rev B88 (2013) 241303(R). 10.1103/PhysRevB.88.241303Search in Google Scholar
[10] Y.Tanaka, Z.Ren, T.Sato, K.Nakayama1, S.Souma, T.Takahashi, K.Segawa, Y.Ando: Nat. Phys.8 (2012) 800 – 803. 10.1038/NPHYS2442Search in Google Scholar
[11] M.K.Wolfgang, H.S.Jong-Soo, L.Schwinghammer: J. Am. Chem. Soc129 (2007) 11354 – 11355. 17722931; 10.1021/ja074481zSearch in Google Scholar
[12] J.Shen, A.Y.Jung, F.S.Disa: Nano Lett.14 (2014) 4183 – 4188. 10.1021/nl501953sSearch in Google Scholar
[13] Z.Li, Y.Chen, J.F.Li: Nano Energy28 (2016) 78 – 86. 10.1016/j.nanoen.2016.08.008Search in Google Scholar
[14] Z.Y.Chu, H.Q.Liu, C.H.Yuan, Y.J.Gu: Mater. Chem. Phys.199 (2017) 464 – 470. j.matchemphys.2017.07.018. 10.1016/Search in Google Scholar
[15] H.Q.Liu, T.T.Zheng, Q.Y.Guo, Y.J.Gu: Rare Met. Mater. Eng.41 (2012) 748–752. 1002-185X(2012)04-0748-05Search in Google Scholar
[16] N.D.Bronstein, L.M.Wheeler, N.C.Anderson: Chem. Mater.30 (2018) 3131 – 3140. acs.chemmater.8b01358. 10.1021/Search in Google Scholar
[17] H.Q.Liu, Q.Su, H.Z.Cui, Y.J.Gu: J. Appl. Electrochem47 (2017) 691 – 698. DOI 10.1007/s10800–017–1070–5. 10.1007/s10800-017-1070-5Search in Google Scholar
[18] K.Kadel, L.Kumari, X.W.Wang: Nanoscale Res. Lett.9 (2014) 227 (1–10). 1556–276X-9–227. 24872808; 10.1186/Search in Google Scholar
[19] H.Song, S.J.Huang, L.Fu: Phys. Rev. X7 (2017) 011020. 10.1103/PhysRevX.7.011020Search in Google Scholar
[20] Z.W.Srokol, G.Rothenberg: Top. Catal.53 (2010) 1258 – 1263. 10.1007/s11244-010-9578-5Search in Google Scholar
[21] D.L.Xia, Y.F.Li, H.R.Gao: Nanosci. Nanotechnol. Lett.9 (2017) 1531 – 1538. https://doi.org/10.1166/nnl.2017.2498.Search in Google Scholar
[22] T.Mokari, M.J.Zhang, P.D.Yang: J. Am. Chem. SOC.129 (2007) 9864 – 9865. a074145i. 17658815; 10.1021/jSearch in Google Scholar
[23] Z.Li, S.Shao, N.Li: Nano Lett.13 (2013) 5443 – 5448. 24138562; 10.1021/nl4030193Search in Google Scholar
[24] Y.G.Yan, L.X.Zhou, Y.Zhang: Cryst. Growth Des.8 (2008) 3285 – 3289. 10.1021/cg800105hSearch in Google Scholar
[25] W.Niu, S.Zheng, D.Wang: J. Am. Chem. Soc.131 (2009) 697 – 703. 10.1021/ja804115rSearch in Google Scholar
© 2019, Carl Hanser Verlag, München