Accessible Unlicensed Requires Authentication Published by De Gruyter May 17, 2019

Finite element simulation of the residual stress in Ti6Al4V titanium alloy laser welded joint

Xilong Zhao and Kun Wang

Abstract

In this study, in order to investigate the mechanical heterogeneity of a Ti6Al4V titanium alloy laser-welded joint, microstructural examinations, microhardness tests and shear punch tests were carried out. Meanwhile, hole drilling was deployed to measure the residual stress in the joints. In residual stress simulation studies, the complex phenomenon of welding was numerically modelled by indirectly coupled transient, non-linear thermo-mechanical analysis. An elongated combined heat source was used here for modelling the temperature field. The effects of the residual stress after welding, both for considering and neglecting mechanical heterogeneity, were investigated systematically. The obtained results indicate that the residual stress of the simulation, when mechanical heterogeneity is considered closely, matches the experimental data.


Correspondence address, Associate Prof. Dr. Xilong Zhao, School of Materials Science and Engineering, Lanzhou Jiaotong University, Anning west road, No 88, Lanzhou 730070, P.R. China, Tel.: +86 15769341048, Fax: +86 0931 4956651, E-mail:

References

[1] P.M.Mackenzie, C.A.Walker, J.Mckelvie: Thin Wall Struct.45 (2007) 400406. 10.1016/j.tws.2007.03.007. Search in Google Scholar

[2] K.J.Qiu, B.L.Wang, F.Y.Zhou, W.J.Lin, L.Li, J.P.Lin, Y.F.Zheng: J. Mater. Eng. Perform.21 (2012) 20122695. DOI:org/10.1007/s11665–012–0308-y. 10.1007/s11665-012-0308-y Search in Google Scholar

[3] S.Cai, D.M.Bailey, L.E.kay: J. Mater. Eng. Perform.21 (2012) 20122559. 10.1007/s11665-012-0302-4. Search in Google Scholar

[4] K.M.Hong, Y.C.Shin: J. Mater. Process. Technol.237 (2016) 420429. 10.1016/j.jmatprotec.2016.06.034. Search in Google Scholar

[5] K.Nikolai, V.Volker, F.Vadim, F.Fedor, R.Stefan: Opt. Laser. Eng.86 (2016) 172180. 10.1016/j.optlaseng.2016.06.004. Search in Google Scholar

[6] J.Goldak, A.Chakravarti, M.Bibby: Metall. Mater. Trans. B15 (1984) 299305. 10.1007/BF02667333. Search in Google Scholar

[7] P.Knoedel, S.Gkatzogiannis, T.Ummenhofer: J. Constr. Steel Res.132 (2017) 8396. 10.1016/j.jcsr.2017.01.010. Search in Google Scholar

[8] R.Avilés, J.Albrzuri, A.Rodríguez, LN.López de lacalle: Int. J. Fatigue55 (2013) 230244. 10.1016/j.ijfatigue.2013.06.024. Search in Google Scholar

[9] X.Y.Fang, H.Liu, J.X.Zhang: J. Mater. Eng. Perform.23 (2014) 19731980. 10.1007/s11665-014-1002-z. Search in Google Scholar

[10] S.H.Kim, J.B.Kim, W.J.Lee: J. Mater. Process. Technol.209 (2009) 39053913. 10.1016/j.jmatprotec.2008.09.012. Search in Google Scholar

[11] D.A.Deng, H.Murakawa: Comp. Mater. Sci.37 (2006) 269277. 10.1016/j.commatsci.2005.07.007. Search in Google Scholar

[12] Z.Barsouma, A.Lundbäck: Eng. Fail. Anal.16 (2009) 22812289. 10.1016/j.engfailanal.2009.03.018. Search in Google Scholar

[13] C.Liu, B.Wu, J.X.Zhang: Metall. Mater. Trans.B 41B (2010) 11291138. 10.1007/s11663-010-9408-y. Search in Google Scholar

[14] C.Heinze, C.Schwenk, M.Rethmeier: J. Constr. Steel Res.72 (2012) 1219. 10.1016/j.jcsr.2011.08.011. Search in Google Scholar

[15] C.Liu, J.X.Zhang, C.B.Xue: Fusion. Eng. Des.86 (2011) 288295. 10.1016/j.fusengdes.2011.01.116. Search in Google Scholar

[16] S.Nishikawa, Y.Horii, H.Murakawa: Trans. JWRI71 (2002) 366367. hdl.handle.net/11094/10833. Search in Google Scholar

[17] J.A.Francis, H.K.D.H.Bhadeshia, P.J.Withers: Mater. Sci. Technol.23 (2007) 10091020. 10.1179/174328408X372074. Search in Google Scholar

[18] D.A.Deng, Y.Luo, H.Serizawa, M.Shibahara: Trans. JWRI32 (2003) 325333. hdl.handle.net/11094/12750. Search in Google Scholar

[19] H.K.D.H.Bhadeshia: Mater. Sci. Eng. A378 (2004) 3439. 10.1016/j.msea.2003.10.328. Search in Google Scholar

[20] X.W.Lei, J.H.Huang, X.Jin, S.H.Chen, X.K.Zhao: Mater. Lett.181 (2016) 240243. 10.1016/j.matlet.2016.06.039. Search in Google Scholar

[21] D.A.Deng, H.Murakawa: Comp. Mater. Sci.43 (2008) 681695. 10.1016/j.commatsci.2008.01.025. Search in Google Scholar

[22] Z.Muhammad, N.Daniel, J.Jean-François, F.Boitout, L.Dischert, X.Noe: Int. J. Pres. Ves. Pip.88 (2011) 4556. 10.1016/j.ijpvp.2010.10.008. Search in Google Scholar

[23] X.L.Zhao, X.Song, J.X.Zhang: Chin. J. Nonfer. Metal.22 (2012) 388393. 10.19476/j.ysxb.1004.0609.2012.02.009. Search in Google Scholar

[24] X.L.Zhao, J.X.Zhang, X.Song, W.Guo: Mater. Sci. Technol.29 (2013) 14051413. 10.1179/1743284713Y.0000000314. Search in Google Scholar

[25] S.Goyal, V.Karthik, K.V.Kasiviswanathan, M.Valsan, K.Bhann Sankara Rao, B.Raj: Mater. Des.31 (2010) 25462552. 031. 10.1016/j.matdes.2009.11. Search in Google Scholar

[26] R.K.Guduru, K.A.Darling, R.Kishore, R.O.Scattergood, C.C.Koch, K.L.Murty: Mater. Sci. Eng. A395 (2005) 307314. 2004.12.048. 10.1016/j.msea. Search in Google Scholar

[27] V.Tvergaard, A.Needleman: Acta Mater.32 (1984) 157169. 10.1016/0001-6160(84)90213-X. Search in Google Scholar

[28] V.Tvergaard: Int. J. Fract.17 (1981) 389407. 10.1007/BF00036191. Search in Google Scholar

[29] V.Tvergaard: Int. J. Fract.18 (1982) 237252. 10.1007/BF00015686. Search in Google Scholar

[30] M.Zhang, F.Bridier, P.Villechaise: Acta Mater.58 (2010) 10871096. 10.1016/j.actamat.2009.10.025. Search in Google Scholar

[31] X.L.Zhao, J.X.Zhang: J. Mater. Eng. Perform.22 (2013) 31823191. 10.1007/s11665-013-0614-z. Search in Google Scholar

[32] K.Nahshon, J.W.Hutchinson: Eur. J. Mech. A27 (2008) 117. 10.1016/j.euromechsol.2007.08.002. Search in Google Scholar

[33] Y.L.Wang, S.H.Lianga, J.T.Ren: Mater. Sci. Eng. A534 (2012) 542545. 10.1016/j.msea.2011.12.005. Search in Google Scholar

[34] D.J.Smith, P.J.Bouchard, D.George: J. Strain. Anal. Eng.35 (2000) 287305. 10.1243/0309324001514422. Search in Google Scholar

[35] J.Li, Q.Guan, Y.W.Shi: Sci. Technol. Weld. Joining9 (2004) 451458. 10.1179/136217104225021643. Search in Google Scholar

[36] M.Labudovic, R.Kovacevic: Proc. Inst. Mech. Eng.215 (2001) 315340. 10.1243/0954406011520742. Search in Google Scholar

[37] M.Grujicic, G.Ardkere, B.Pandurangan, C.F.Yen, B.A.Cheeseman: J. Mater. Eng. Perform.21 (2011) 20112023. 10.1007/s11665-011-0097-8. Search in Google Scholar

[38] K.R.Zhang, J.X.Zhang: Rare. Metal. Mater. Eng.38 (2009) 991994. 10.3321/j.issn:1002-185X.2009.06.011. Search in Google Scholar

[39] Z.Cai, and H.Zhao: Sci. Technol. Weld. Joi.8 (2003) 195204. 10.1179/136217103225010916. Search in Google Scholar

[40] C.Liu, J.X.Zhang, BWu, S.L.Gong: Mater. Des.34 (2012) 609617. 10.1016/j.matdes.2011.05.014. Search in Google Scholar

[41] N.Kishore, S.Ganesh Sundara Raman, C.V.Srinivasa Murthy: Mater. Sci. Eng. A471 (2007) 113119. 2007.03.040. 10.1016/j.msea. Search in Google Scholar

[42] S.Lathabai, B.L.Jarvis, K.J.Barton: Mater. Sci. Eng. A299 (2001) 8193. 10.1016/S0921-5093(00)01408-8. Search in Google Scholar

[43] X.Cao, M.Jahazi: Opt. Laser Eng.47 (2009) 12311241. 10.1016/j.optlaseng.2009.05.010. Search in Google Scholar

[44] E.Akman, A.Demir, T.Canel: J. Mater. Process. Technol.209 (2009) 37053713. 10.1016/j.jmatprotec.2008.08.026. Search in Google Scholar

[45] S.H.Wang, M.D.Wei, L.W.Tsay: Mater. Lett.57 (2003) 18151823. 10.1016/S0167-577X(02)01074-1. Search in Google Scholar

Received: 2018-04-08
Accepted: 2018-10-26
Published Online: 2019-05-17
Published in Print: 2019-05-15

© 2019, Carl Hanser Verlag, München