Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter May 17, 2019

Effect of sintering temperature on the densification and optical properties of spark plasma sintered ZnSe ceramics

  • Marzieh Ehsani , Saman Safian , Mohammad Zakeri and Mohammad Reza Rahimipour


In the present study, ZnSe ceramics were sintered at different temperatures in the range of 900 °C to 1 100 °C by spark plasma sintering. Microstructure, hardness, phase composition, and the optical properties of the ceramics were investigated by scanning electron microscopy, micro-Vickers hardness, X-ray diffraction and Fourier-transform infrared spectroscopy. The results indicated that temperature has a strong effect on grain growth as well as on reducing porosity and improving the properties. The optimal combination of properties (99.5 % density, 165 kg mm−2 hardness and 30 % transmission) was achieved after sintering at 1 100 °C for a holding time of 10 min with an applied pressure of 90 MPa. Furthermore, the grains tended to orient along the spark plasma sintering direction via preferential grain growth that was observed by X-ray diffraction and scanning electron microscopy.

Correspondence address, Mr. Saman Safian, Ceramic Department, Materials and Energy Research Center (MERC), Karaj, P.O. Box 14155-4777, Iran, Tel.: +98 26 36204131-4, Fax: +98 26 36201888, Email:


[1] L.Z.Kriksunov: Handbook on the Principles of Infrared Engineering, Sov. Radio, Moscow (1978).Search in Google Scholar

[2] A.R.Hilton: J. Electron. Mater.2 (1973) 211. 10.1007/BF02666154Search in Google Scholar

[3] P.Klocek: Handbook of infrared optical materials, CRC Press (1991). 1874995;Search in Google Scholar

[4] E.M.Gavrishchuk, E.V.Yashina: J. Opt. Tech.71 (2004) 822. 10.1364/JOT.71.000822Search in Google Scholar

[5] C.A.Klein, J.Pappis: Opt. Eng.25 (1986) 254519. 10.1117/12.7973854Search in Google Scholar

[6] E.M.Gavrushchuk: Inorg. Mater.39 (2003) 883. 1025529017192. 10.1023/ASearch in Google Scholar

[7] D.Hodges: Industrial Optics Manufacturers Challenged on Performance and Cost (1995).Search in Google Scholar

[8] D.C.Harris: Inf. Phys. Tech.39 (1998) 185. 10.1016/S1350-4495(98)00006-1Search in Google Scholar

[9] A.N.Bryzgalov, V.V.Musatov, V.V.Buz'ko: J. Semicond.38 (2004) 310. 10.1134/1.1682334Search in Google Scholar

[10] D.C.Harris: Int. Socie. Opt. Photon.12 (2007) 654502. 10.1117/12.716808Search in Google Scholar

[11] B.N.Kim, K.Hiraga, K.Morita, H.Yoshida, Y.Kagawa: Acta Mater.58 (2010) 4527. 10.1016/j.actamat.2010.04.049Search in Google Scholar

[12] S.Hayun, V.Paris, R.Mitrani, S.Kalabukhov, M.P.Dariel, E.Zaretsky, N.Frage: Ceram. Int.38 (2012) 6335. DOI: 10.1016/j.ceramint.2012.05.003Search in Google Scholar

[13] N.Frage, S.Kalabukhov, N.Sverdlov, V.Kasiyan, A.Rothman, M.P.Dariel: Ceram. Int.38 (2012) 5513. 10.1016/j.ceramint.2012.03.066Search in Google Scholar

[14] A.Cuccu, S.Montinaro, R.Orru, G.Cao, D.Bellucci, A.Sola, V.Cannillo: Ceram. Int.41 (2015) 725. 10.1016/j.ceramint.2014.08.131Search in Google Scholar

[15] M.A.Saeed, F.A.Deorsola, R.M.Rashad: (2013. Int. J. Refract. Met. Hard Mater.41 (2013) 48. 10.1016/j.ijrmhm.2013.01.016Search in Google Scholar

[16] T.Borkar, R.Banerjee: Mater. Sci. Eng.618 (2014) 176. 10.1016/j.msea.2014.08.070Search in Google Scholar

[17] M.Kermani, M.Razavi, M.R.Rahimipour, M.Zakeri: J. Alloys Compd.593 (2014) 242. 10.1016/j.msea.2014.08.070Search in Google Scholar

[18] M.Kermani, M.Razavi, M.R.Rahimipour, M.Zakeri: J. Alloys Compd.585 (2014) 229. 10.1016/j.jallcom.2013.09.125Search in Google Scholar

[19] D.Jiang, D.M.Hulbert, U.Anselmi-Tamburini, T.Ng, D.Land, A.K.Mukherjee: J. Am. Ceram Soc.91 (2008) 151. 10.1111/j.1551-2916.2007.02086.xSearch in Google Scholar

[20] K.Morita, B.N.Kim, K.Hiraga, H.Yoshida: J. Mater. Res.24 (2009) 2863. 10.1557/jmr.2009.0335Search in Google Scholar

[21] N.Roussel, L.Lallemant, B.Durand, S.Guillemet, J.Y.C.Ching, G.Fantozzi, G.Bonnefont: Ceram. Int.37 (2011) 3565. 10.1016/j.ceramint.2011.05.152Search in Google Scholar

[22] R.Chaim, A.Shlayer, C.Estournes: J. Eur. Ceram. Soc.29 (2009) 91. 10.1016/j.jeurceramsoc.2008.05.043Search in Google Scholar

[23] D.JiangA.K.Mukherjee: J. Am. Ceram. Soc.93 (2010) 769. 10.1111/j.1551-2916.2009.03444.xSearch in Google Scholar

[24] C.Chlique, G.Delaizir, O.Merdrignac-Conanec, C.Roucau, M.Dolle, P.Rozier, X.H.Zhang: Opt. Mater.33 (2011) 706. 10.1016/j.optmat.2010.10.008Search in Google Scholar

[25] Y.Chen, L.Zhang, J.Zhang, P.Liu, T.Zhou, H.Zhang, D.Shen: Opt. Mater.50 (2015) 36. 10.1016/j.optmat.2015.03.058Search in Google Scholar

[26] G.Zhou: PhD thesis, ZnSe ceramics and phosphate glasses for optical applications in the visible and infrared ranges, Rennes1(2014).Search in Google Scholar

[27] S.Safian, M.Zakeri, M.R.Rahimipour, A.Rahbari, E.Irom: Int. J. Mater. Res.107 (2016) 948. 10.3139/146.111413Search in Google Scholar

[28] O.Madelung, U.Rossler, M.Schulz: Zinc selenide (ZnSe) density, melting point, hardness, Springer, Berlin Heidelberg (1999).Search in Google Scholar

[29]–3467(15)00223–2/h0105.Search in Google Scholar

[30] R.D.Walther. Method for preparing pure, stable znse powder, US Patent: 3454358 (1969).Search in Google Scholar

[31] T.Hungría, J.Galy, A.Castro: Adv. Eng. Mater.11 (2009) 615. 10.1002/adem.200900052Search in Google Scholar

[32] B.N.Kim, K.Morita, G.H.Lim, K.Hiraga, H.Yoshida: J. Am. Ceram. Soc.,93 (2010) 2158. 10.1111/j.1551-2916.2010.03699.xSearch in Google Scholar

[33] M.Tokita: Spark Plasma Sintering (SPS) method, systems and applications, Handbook of Advanced Ceramics: Materials, Applications, Processing and Properties, Elsevier Inc, (2013).Search in Google Scholar

[34] D.C.Harris, Y.Sheng: Infrared window and dome materials, Tutorial texts in optical engineering, (1992).Search in Google Scholar

[35] C.S.Sahagian, C.A.Pitha: Compendium on High Power Infrared Laser Window Materials, Cambridge (1972).Search in Google Scholar

[36] R.E.Clark, N.Y.Rochester: Plurality optical element pressing process, U.S. Patent:3589880 (1970).Search in Google Scholar

[37] Y.Xiong, Z.Y.Fu, H.Wang, Y.C.Wang, Q.J.Zhang: Mater. Sci. Eng.123 (2005) 57. 10.1016/j.mseb.2005.06.023Search in Google Scholar

[38] C.Chlique: PhD thesis, Preparation et caracterisation de poudres et ceramiques (oxy) sulfures pour applications en optique passive et active, Universite de Rennes1, (2011).Search in Google Scholar

[39] K.Sairam, G.K.Sonber, T.C.Murthy, C.Subramanian, R.K.Fotedar, P.Nanekar, R.C.Hubli: Int. J. Refrac. Metal. Hard Mater.42 (2014) 185. 10.1016/j.ijrmhm.2013.09.004Search in Google Scholar

[40] S.Grasso, B.N.Kim, C.Hu, G.Maizza, Y.Sakka: J. Am. Ceram. Soc.93 (2010) 2460. 10.1111/j.1551-2916.2010.03811.xSearch in Google Scholar

[41] S.Grasso, H.Yoshida, H.Porwal, Y.Sakka, M.Reece: Ceram. Int.39 (2013) 3243. 10.1016/j.ceramint.2012.10.012Search in Google Scholar

[42] H.Zhang, B.N.Kim, K.Morita, H.Yoshida, K.Hiraga, Y.Sakka: J. Am. Ceram. Soc.94 (2011) 3206. DOI:–2916.2011.04789.x. 10.1111/j.1551-2916.2011.04481.xSearch in Google Scholar

Received: 2018-05-31
Accepted: 2018-10-26
Published Online: 2019-05-17
Published in Print: 2019-05-15

© 2019, Carl Hanser Verlag, München

Downloaded on 27.3.2023 from
Scroll Up Arrow