Accessible Requires Authentication Published by De Gruyter May 17, 2019

Mechanical properties characterisation of AlSi10Mg parts produced by laser powder bed fusion additive manufacturing

Francesco Del Re, Fabio Scherillo, Vincenzo Contaldi, Biagio Palumbo, Antonino Squillace, Pasquale Corrado and Paolo Di Petta


Additive manufacturing refers to a wide class of manufacturing processes based on the progressive building of functional parts through the addition of material layer upon layer. These technologies were first confined to prototyping, but the subsequent development of additive manufacturing processes for further materials, such as metals, has encouraged their worldwide industrial spread, from the biomedical field to the automotive and the aerospace industries. Additively manufactured parts are required to meet high and stable performance, at least comparable to that of conventional wrought materials, so as to comply with strict and well-defined international standards. This paper presents an investigation into the mechanical properties of AlSi10Mg parts produced by laser powder bed fusion technique, using different spatial orientations within the build volume. The effects of the part position and orientation on the static (tensile) properties of the produced parts were assessed by means of the two-way analysis of variance technique. The build angle was found to be the most effective parameter, while the variability ascribable to the effect of part position resulted mainly as physiological. The fatigue resistance showed a globally decreasing trend with increasing build angle.

Correspondence address, Francesco Del Re, University of Naples Federico II, Dept. of Industrial Engineering, 80, Piazzale Vincenzo Tecchio, 80125, Napoli, Italy, Tel: +39 081 76 82 185, Fax: +39 081 76 82 187, E-mail:


[1] ISO 17296–2:2015 – Additive manufacturing, General principles, Part 2: Overview of process categories and feedstock. International Organization for Standardization2015. ICS: 25.030. Search in Google Scholar

[2] D.D.Gu, W.Meiners, K.Wissenbach, R.Poprawe: Int. Mater. Rev.57 (2012) 133. 10.1179/1743280411Y.0000000014 Search in Google Scholar

[3] J.Gardan: Int. J. Prod. Res.54 (2015) 3118. 10.1080/00207543.2015.1115909 Search in Google Scholar

[4] W.JSames, F.A.List, S.Pannala, R.R.Dehoff, S.S.Babu: Inter. Mater. Rev.61 (2016) 315. 10.1080/09506608.2015.1116649 Search in Google Scholar

[5] M. KhorramNiaki, F.Nonino: Int. J. Prod. Res.55 (2016) 1419. 10.1080/00207543.2016.1229064 Search in Google Scholar

[6] S.AKhairallah, A.T.Anderson, A.Rubenchik, W.E.King: Acta Mater.108 (2016) 36. 10.1016/j.actamat.2016.02.014 Search in Google Scholar

[7] D.Herzog, V.Seyda, E.Wycisk, C.Emmelmann: Acta Mater.117 (2016) 371. 10.1016/j.actamat.2016.07.019 Search in Google Scholar

[8] N.T.Aboulkhair, N.M.Everitt, I.Ashcroft, C.Tuck: Addit. Manuf.1–4 (2014) 77. 10.1016/j.addma.2014.08.001 Search in Google Scholar

[9] T.B.Sercombe, X.Li: Mater. Technol.31 (2016) 77. 10.1179/1753555715Y.0000000078 Search in Google Scholar

[10] N.Gardan, A.Schneider, J.Gardan: Comput.-Aided Des. Applic.13 (2016) 39. 10.1080/16864360.2015.1059192 Search in Google Scholar

[11] Search in Google Scholar

[12] L.Wang, X.Jiang, M.Guo, X.Zhu, B.Yan: Mater. Sci. Technol.33 (2017) 2274. 10.1080/02670836.2017.1398513 Search in Google Scholar

[13] T.M.Mower, M.J.Long: Mater. Sci. Eng., A651 (2016) 198. 10.1016/j.msea.2015.10.068 Search in Google Scholar

[14] D.Manfredi, F.Calignano, M.Krishnan, R.Canali, E.P.Ambrosio, E.Atzeni: Materials6 (2013) 856. 28809344; 10.3390/ma6030856 Search in Google Scholar

[15] E.O.Olakanmi, R.F.Cochrane, K.W.Dalgarno: J. Mater. Sci.74 (2015) 401. 10.1016/j.pmatsci.2015.03.002 Search in Google Scholar

[16] N.Read, W.Wang, K.Essa, M.M.Attallah: Mater. Des.65 (2015) 417. 10.1016/j.matdes.2014.09.044 Search in Google Scholar

[17] K.Kempen, L.Thijs, J. VanHumbeeck, J.P.Kruth: Physics Procedia39 (2012) 439. 10.1016/j.phpro.2012.10.059 Search in Google Scholar

[18] T.Kimura, T.Nakamoto: Mater. Des.89 (2016) 1294. 10.1016/j.matdes.2015.10.065 Search in Google Scholar

[19] I.Yadroitsev, L.Thivillon, P.Bertrand, I.Smurov: Appl. Surf. Sci.254 (2007) 980. 10.1016/j.apsusc.2007.08.046 Search in Google Scholar

[20] D.Buchbinder, W.Meiners, K.Wissenbach, R.Poprawe: J. Laser Appl.27 (2015) S29205. 10.2351/1.4906389 Search in Google Scholar

[21] D.Buchbinder, H.Schleifenbaum, S.Heidrich, W.Meiners, J.Bultmann: Physics Procedia12 (2011), 12, 271. 10.1016/j.phpro.2011.03.035 Search in Google Scholar

[22] E.Brandl, U.Heckenberger, V.Holzinger, D.Buchbinder: Mater. Des.349 (2012) 159. 10.1016/j.matdes.2011.07.067 Search in Google Scholar

[23] B.Palumbo, F. DelRe, M.Martorelli, A.Lanzotti, P.Corrado: Materials10 (2017) 144. 28772505; 10.3390/ma10020144 Search in Google Scholar

[24] F. DelRe, V.Contaldi, A.Astarita, B.Palumbo, A.Squillace, P.Corrado, P. DiPetta: Int. J. Adv. Manuf. Technol.97 (2018) 2231. 10.1007/s00170-018-2090-y Search in Google Scholar

[25] B.Palumbo, R.Marrone, G. DeChiara, in: P.Erto (Ed.), Statistics for Innovation, Springer, Milan, Italy (2009). 10.1007/978-88-470-0815-1 Search in Google Scholar

[26] A.L.Cooke, J.A.Slotwinski (2012). 10.6028/NIST.IR.7873 Search in Google Scholar

[27] K.Kempen, L.Thijs, J. VanHumbeeck, J.P.Kruth: Mater. Sci. Technol.31 (2014) 917. 10.1179/1743284714Y.0000000702 Search in Google Scholar

[28] E.O.Olakanmi: J. Mater. Process. Technol.213 (2013) 1387. 10.1016/j.jmatprotec.2013.03.009 Search in Google Scholar

[29] EN ISO 6892–1:2016 – Metallic Materials, Tensile Testing, Part 1: Method of Test at Room Temperature. International Organization for Standardization2016. ICS: 77.040.10. Search in Google Scholar

[30] ASTM E8/E8M–16a: Standard Test Methods for Tension Testing of Metallic Materials. ASTM International2016. 10.1520/E0008_E0008M-16A Search in Google Scholar

[31] D.C.Montgomery, D.C. Design and Analysis of Experiments, John Wiley & Sons: Hoboken, NJ, USA (2005). ISBN: 0–471–31649–0. Search in Google Scholar

[32] D.C.Montgomery, G.C.Runger: Applied Statistics and Probability for Engineers, John Wiley & Sons: Hoboken, NJ, USA (2003). ISBN: 0–471–20454–4. Search in Google Scholar

[33] DIN EN 6072:2011 – Aerospace series, Metallic materials, Test methods, Constant amplitude fatigue testing. German institute for Standardization2011. Search in Google Scholar

[34] ASTM E466–15: Standard Practice for Conducting Force Controlled Constant Amplitude Axial Fatigue Tests of Metallic Materials. ASTM International2015. 10.1520/E0466-15 Search in Google Scholar

[35] ASTM E739–10(2015): Standard Practice for Statistical Analysis of Linear or Linearized Stress-Life (S-N) and Strain-Life (-N) Fatigue Data. ASTM International2015. 10.1520/E0739-10 Search in Google Scholar

[36] ASTM F1877–16: Standard Practice for Characterization of Particles. ASTM International2016. 10.1520/F1877-16 Search in Google Scholar

[37] ASTM B822–17: Standard Test Method for Particle Size Distribution of Metal Powders and Related Compounds by Light Scattering. ASTM International2017. 10.1520/B0822-17 Search in Google Scholar

[38] S.Greenland, S.J.Senn, K.J.Rothman, J.B.Carlin, C.Poole, S.N.Goodman, D.G.Altman: Eur. J. Epidemiol.31 (2016) 337. 27209009; 10.1007/s10654-016-0149-3 Search in Google Scholar

[39] F.Trevisan, F.Calignano, M.Lorusso, J.Pakkanen, A.Aversa, E.P.Ambrosio, M.Lombardi, P.Fino, D.Manfredi: Materials10 (2017) 76. 28772436; 10.3390/ma10010076 Search in Google Scholar

[40] K.G.Prashanth, S.Scudino, H.J.Klauss, K.B.Surreddi, L.Löber, Z.Wang, A.K.Chaubey, U.Kühn, J.Eckert: Mater. Sci. Eng., A590 (2014) 153. 10.1016/j.msea.2013.10.023 Search in Google Scholar

[41] DIN EN 1706:2013 – Aluminium and Aluminium alloys, Castings, Chemical composition and mechanical properties. German institute for Standardization2013. Search in Google Scholar

Received: 2018-07-27
Accepted: 2018-10-29
Published Online: 2019-05-17
Published in Print: 2019-05-15

© 2019, Carl Hanser Verlag, München