Accessible Requires Authentication Published by De Gruyter May 17, 2019

A critical analysis of the X-ray diffraction intensities in concentrated multicomponent alloys

Rameshwari Naorem, Anshul Gupta, Sukriti Mantri, Gurjyot Sethi, K. V. ManiKrishna, Raj Pala, Kantesh Balani and Anandh Subramaniam

Abstract

The decrease in the X-ray diffraction Bragg peak intensity from concentrated multicomponent alloys (CMA), has been modeled in literature akin to the effect of temperature. In the current work, experiments and computations are used to comprehend the effect of atomic disorder in CMA on the Bragg peaks of powder diffraction patterns. Ni–Co–Fe–Cr–Mn and Cu–Ni–Co–Fe–V have been used as model systems for the study. It is proved that the intensity decrease is not insignificant, but is not anomalous either. A recipe is evolved to compare the Bragg peak intensities across the alloys of a CMA. It is demonstrated that it is incorrect to model the effect of an increase in atomic disorder in a CMA, as a temperature effect. A ‘good measure’ of lattice distortion is identified and further it is established that full width half maximum is a good measure of the bond length distortion. It is demonstrated that the true strain due to bond length distortion is of significantly lower magnitude than that given by a priori measures of lattice strain. In the scheme of categorization of defects in crystals, it is argued that CMA is a separate class (as distinct from type-I and type-II defects); which should be construed as a defected solid, rather than a defect in a solid.


Correspondence address, Prof. Dr. Anandh Subramaniam, Department of Materials Science and Engineering, Indian Institute of Technology, Kanpur- 208016 U.P., INDIA, Tel: +91 512 259 7215, e-mail: , Web page: home.iitk.ac.in/∼anandh

References

[1] A.Guinier: X-Ray diffraction in crystals, imperfect crystals, and amorphous bodies. Translated into English by: LorrainP, Sainte-MarieLD. San Francisco, CA: W. H. Freeman and Co. (1963). ISBN: 0716703076 9780716703075. Search in Google Scholar

[2] M.A.Krivoglaz: Theory of X-Ray and thermal-Neutron scattering by real crystals. New York, NY: Plenum Press (1969). ISBN: 978–1–4899–5584–5. Search in Google Scholar

[3] B.E.Warren: X-Ray diffraction. New York, NY: Addison-Wesley Pub. Co. (1969). ISBN: 978–0–486–66317–3. Search in Google Scholar

[4] B.S.Murty, J.W.Yeh, S.Ranganathan: High-Entropy Alloys. London, UK: Elsevier Inc. (2014). ISBN: 9780128002513. Search in Google Scholar

[5] M.C.Gao, J.W.Yeh, P.K.Liaw, Y.Zhang, eds.: High-entropy alloys: fundamentals and applications. Switzlerland: Springer (2016). ISBN: 978–3–319–27013–5. 10.1007/978-3-319-27013-5 Search in Google Scholar

[6] D.Miracle, O.Senkov: Acta Mater.122 (2017) 448551. 10.1016/j.actamat.2016.08.081 Search in Google Scholar

[7] J.W.Yeh, Y.L.Chen, S.J.Lin, S.K.Chen: Mater. Sci. Forum.560 (2007) 19. 10.4028/www.scientific.net/MSF.560.1 Search in Google Scholar

[8] Y.Zhang, T.T.Zuo, Z.Tang, M.C.Gao, K.A.Dahmen, P.K.Liaw, Z.P.Lu: Prog. Mater Sci.61 (2014) 193. 10.1016/j.pmatsci.2013.10.001 Search in Google Scholar

[9] A.K.Singh, A.Subramaniam: J. Alloys Compd.587 (2014) 113119. 10.1016/j.jallcom.2013.10.133 Search in Google Scholar

[10] L.I.Anmin, X.Zhang: Acta Metall. Sin. Engl.22 (2009) 219224. 10.1016/S1006-7191(08)60092-7 Search in Google Scholar

[11] A.K.Singh, N.Kumar, A.Dwivedi, A.Subramaniam: Intermetallics.53 (2014) 112119. 10.1016/j.intermet.2014.04.019 Search in Google Scholar

[12] L.R.Owen, E.J.Pickering, H.Y.Playford, H.J.Stone, M.G.Tucker, N.G.Jones: Acta Mater.122 (2017) 1118. 10.1016/j.actamat.2016.09.032 Search in Google Scholar

[13] J.W.Yeh, S.Y.Chang, Y.D.Hong, S.K.Chen, S.J.Lin: Mater. Chem. Phys.103 (2007) 4146. 10.1016/j.matchemphys.2007.01.003 Search in Google Scholar

[14] E.J.Mittemeijer, U.Welzel: Modern Diffraction Methods, Wiley-VCH, Weinheim (2013). ISBN: 978 3 527 32279 4. 10.1002/9783527649884.ch4 Search in Google Scholar

[15] B.Feng, M.Widom: Mater. Chem. Phys.210 (2018) 309314. 10.1016/j.matchemphys.2017.06.038 Search in Google Scholar

[16] I.Toda-Caraballo, P.E.Rivera-Diaz-del-Castillo: Intermetallics.71 (2016) 7687. 10.1016/j.intermet.2015.12.011 Search in Google Scholar

[17] Y.Waseda: Anomalous X-Ray scattering for materials characterization: atomic-Scale structure determination. Berlin: Springer (2002). ISBN: 978–3–540–46008–4. Search in Google Scholar

[18] K.Huang: Proc. R. Soc. A190 (1947) 102117. 20255303; 10.1098/rspa.1947.0064 Search in Google Scholar

[19] W.W.Webb: J. Appl. Phys.33 (1962) 35463552. 10.1063/1.1702444 Search in Google Scholar

[20] F.H.Herbstein, B.S.Borie, B.L.Averbach: Acta Crystallogr.9 (1956) 466471. 10.1107/S0365110X56001261 Search in Google Scholar

[21] R.A.Coyle, B.Gale: Acta Crystallogr.8 (1955) 105111. 10.1107/S0365110X55000406 Search in Google Scholar

[22] R.W.James: The optical principles of the diffraction of X-Rays. London, Bell (1962). ISBN: 0918024234 9780918024237. Search in Google Scholar

[23] S.Dietrich, W.Fenzl: Phys. Rev. B.39 (1989) 8873. 10.1103/PhysRevB.39.8873 Search in Google Scholar

[24] T.R.Welberry, B.D.Butler: Chem. Rev. 957 (1995) 23692403. 10.1021/cr00039a005 Search in Google Scholar

[25] W.Schweika: Disordered alloys: diffuse scattering and Monte Carlo simulations. Berlin: Springer (1998). 10.1007/BFb0110656 Search in Google Scholar

[26] B.D.Cullity, S.R.Stock: Elements of X-Ray diffraction. Harlow: Pearson education limited (2014). ISBN: 978–1–292–04054–7. Search in Google Scholar

[27] M.Calamiotou, D.Lampakis, N.D.Zhigadlo, S.Katrych, J.Karpinski, A.Fitch, P.Tsiaklagkanos, E.Liarokapis: Physica C: Superconductivity and its Applications.527 (2016) 5562. 10.1016/j.physc.2016.05.019 Search in Google Scholar

[28] J.W.Yeh: JOM67 (2015) 22542261. 10.1007/s11837-015-1583-5 Search in Google Scholar

[29] T.Egami, S.J.Billinge: Underneath the Bragg Peaks, Structural Analysis of Complex Materials. Oxford, UK: Pergamon Materials Series, Elsevier Ltd. (2003). ISBN: 9780080971339. 10.1016/S1470-1804(03)80002-0 Search in Google Scholar

[30] S.Guo, C.Ng, Z.Wang, C.T.Liu: J Alloys Compd.583 (2014) 410413. 10.1016/j.jallcom.2013.08.213 Search in Google Scholar

[31] H.S.Oh, D.Ma, G.P.Leyson, B.Grabowski, E.S.Park, F.Körmann, D.Raabe: Entropy.18 (2016) 321. 10.3390/e18090321 Search in Google Scholar

[32] N.L.Okamoto, K.Yuge, K.Tanaka, H.Inui, E.P.George: AIP Advances.6 (2016) 125008. 10.1063/1.4971371 Search in Google Scholar

[33] H.Song, F.Tian, Q.M.Hu, L.Vitos, Y.Wang, J.Shen, N.Chen: Phys. Rev. Mater.1 (2017) 023404. 10.1103/PhysRevMaterials.1.023404 Search in Google Scholar

[34] T.R.Welberry, T.Weber: Crystallogr. Rev.22 (2016) 278. 10.1080/0889311X.2015.1046853 Search in Google Scholar

[35] J.G.Kirkwood: J. Chem. Phys.2 (1938) 7075. 10.1063/1.1750205 Search in Google Scholar

[36] B.E.Warren, B.L.Averbach, B.W.Roberts: J. Appl. Phys.22 (1951) 14931496. 10.1063/1.1699898 Search in Google Scholar

[37] B.Borie: Acta Crystallogr.10 (1957) 8996. 10.1107/S0365110X57000274 Search in Google Scholar

[38] B.Borie: Acta Crystallogr.12 (1959) 280282. 10.1107/S0365110X5900086X Search in Google Scholar

[39] A.Guinier: Bulletin de la Société française de minéralogie.77 (1954) 680710. DOI:. Search in Google Scholar

[40] B.Cantor, I.T.Chang, P.Knight, A.J.Vincent: Mater Sci Eng A.375 (2004) 213218. 10.1016/j.msea.2003.10.257 Search in Google Scholar

[41] Y.Zhang, Y.J.Zhou, J.P.Lin, G.L.Chen, P.K.Liaw: Adv Eng Mater.10 (2008) 534538. 10.1002/adem.200700240 Search in Google Scholar

[42] Y.F.Ye, C.T.Liu, Y.Yang: Acta Mater.94 (2015) 152161. 10.1016/j.actamat.2015.04.051 Search in Google Scholar

[43] E.A.Brandes, G.B.Brook, C.J.Smithells: Smithells metals reference book.: Butterworth-Heinemann, Oxford (1992). ISBN: 0 7506 7509 8/81–81474–48–1. Search in Google Scholar

[44] V.M.Goldschmidt: Z. Phys. Chem.133 (1928) 397419. DOI:. Search in Google Scholar

[45] www.webelements.com. Search in Google Scholar

[46] J.C.Slater: J. Chem. Phys.41 (1964) 31993204. 10.1063/1.1725697 Search in Google Scholar

[47] D.D.Pollock: Physical properties of materials for engineers. Florida, FL: CRC Press (1993). ISBN: 9780849342370 – CAT# 4237. Search in Google Scholar

[48] S.Enzo, G.Fagherazzi, A.Benedetti, S.Polizzi: J. Appl. Crystallogr.21 (1988) 536542. 10.1107/S0021889888006612 Search in Google Scholar

[49] T.H.De Keijser, J.I.Langford, E.J.Mittemeijer, A.B.Vogels: J. Appl. Crystallogr.15 (1982) 308314. 10.1107/S0021889882012035 Search in Google Scholar

[50] A.J.Wilson: Nature193 (1962) 568569. 10.1038/193568a0 Search in Google Scholar

[51] N.C.Halder, C.N.Wagner: Adv. X-Ray Anal. (1966) 91102. 10.1007/978-1-4684-7633-0_8 Search in Google Scholar

[52] Y.Zhao, J.Zhang: J. Appl. Crystallogr.41 (2008) 10951108. 10.1107/S0021889808031762 Search in Google Scholar

[53] http://www.crystalimpact.com/match/. Search in Google Scholar

[54] W.A.Rachinger: J. Sci. Instrum.25 (1948) 254. 10.1088/0950-7671/25/7/125 Search in Google Scholar

[55] A.R.Stokes: Proc. Phys. Soc.61 (1948) 382. 10.1088/0959-5309/61/4/311 Search in Google Scholar

[56] I.K.Robinson: Phys. Rev. B.33 (1986) 3830. 10.1103/PhysRevB.33.3830 Search in Google Scholar

[57] P.Debye: Annalen der Physik.351 (1915) 80923. 10.1002/andp.19153510606 Search in Google Scholar

[58] MATLAB 2016, https://in.mathworks.com/products/matlab.html. Search in Google Scholar

[59] R.W.Cheary, A.Coelho: J. Appl. Crystallogr.25 (1992) 109121. 10.1107/S0021889891010804 Search in Google Scholar

[60] S.J.Plimpton: Comput. Phys.117 (1995) 19. 10.1006/jcph.1995.1039 Search in Google Scholar

[61] C.A.Becker, F.Tavazza, Z.T.Trautt, R.A.de Macedo: Curr. Opin. Solid State Mater. Sci.17 (2013) 27783. 10.1016/j.cossms.2013.10.001 Search in Google Scholar

[62] S.M.Foiles, M.I.Baskes, M.S.Daw: Phys. Rev B.33 (1986) 7983. 10.1103/PhysRevB.33.7983 Search in Google Scholar

[63] C.Suryanarayana, M.G.Norton: X-Ray Diffraction A Practical Approach. New York, NY: Plenum Press (1998). 10.1007/978-1-4899-0148-4 Search in Google Scholar

[64] J.Gubicza, ed.: X-ray line profile analysis in materials science. Hershey, PA: IGI Global (2014). 24481239; 10.4018/978-1-4666-5852-3 Search in Google Scholar

[65] G.U.Sheng, C.T.Liu: Prog. Nat. Sci.: Mater. Int.21 (2011) 433446. 10.1016/S1002-0071(12)60080-X Search in Google Scholar

[66] W.B.Pearson: The crystal chemistry and physics of metals and alloys, New York, NY: John Wiley & Sons, Inc (1972). DOI:. 10.1016/0003-4916(72)90240-0 Search in Google Scholar

Received: 2018-06-26
Accepted: 2018-10-29
Published Online: 2019-05-17
Published in Print: 2019-05-15

© 2019, Carl Hanser Verlag, München