Accessible Requires Authentication Published by De Gruyter October 4, 2019

Structural and electrochemical properties of lithiated conical carbon nanotubes as anode materials for lithium ion accumulating systems

Nail Suleimanov, Sergey Khantimerov, Krzysztof Kierzek, Vladimir Shustov, Ranis Garipov, Ranis Fatukhov and Vadim Matukhin

Abstract

Interaction of conical carbon nanotubes with lithium during their electrochemical treatment was studied by galvanostatic measurements. The presence of reversible and irreversible reactions during the Li insertion into conical carbon nanotubes was established. The structural changes occurring in the conical walls of the conical carbon nanotubes in consequence of the lithium intercalation were investigated by using X-ray diffraction. The results obtained show that the lithiation of conical carbon nanotubes is partially reversible and leads to a change in the diffraction peak profile (2θ = 26°) corresponding to the interplanar distance in conical carbon nanotubes. Such changes are associated with the lithium insertion into the interplanar spaces of conical carbon nanotubes.


Correspondence address, Sergey Khantimerov, PhD, Senior Fellow, Zavoisky Physical-Technical Institute, FRC Kazan Scientific Center of RAS, Kazan, Russia, Tel.: +7 843 2319123 (add.5), Fax: +7 843 2725075. E-mail:

References

[1] J.B.Goodenough, K.-S.Park: J. Am. Chem. Soc.135 (2013) 1167. PMid:23294028; 10.1021/ja3091438 Search in Google Scholar

[2] DaDeng: Energy Sci. Eng.3 (2015) 385. 10.1002/ese3.95 Search in Google Scholar

[3] E.B.George: J. Electrochem. Soc.164 (2017) 5019. DOI.org/10.1149/2.0251701jes. 10.1149/2.0091707jes Search in Google Scholar

[4] J.Li, R.Zhao, X.He, H.Liu: Ionics15 (2009) 111. 10.1007/s11581-008-0238-8 Search in Google Scholar

[5] J.W.Fergus: J. Power Sources195 (2010) 939. 10.1016/j.jpowsour.2009.08.089 Search in Google Scholar

[6] J.Xu, S.Dou, H.Liu, L.Dai: Nano Energy2 (2013) 439. 10.1016/j.nanoen.2013.05.013 Search in Google Scholar

[7] S.Goriparty, E.Miele, F.De Angelis, E.Di Fabrizio, R. ProiettiZaccaria, C.Capligia: J. Power Sources257 (2014) 421. 10.1016/j.jpowsour.2013.11.103 Search in Google Scholar

[8] N.Loeffler, D.Bresser, S.Passerini: Johnson Matthey Technol. Rev.59 (2015) 34. 10.1595/205651314x685824 Search in Google Scholar

[9] R.Fong, U.V.Sacken, J.R.Dahn: J. Electrochem. Soc.137 (1990) 2009. 10.1149/1.2086855 Search in Google Scholar

[10] Y.P.Wu, E.Rahm, R.Holze: J. Power Sources114 (2003) 228. 10.1016/S0378-7753(02)00596-7 Search in Google Scholar

[11] C.Jiang, E.Hosono, H.Zhou: Nano Today1 (2006) 28. 10.1016/S1748-0132(06)70114-1 Search in Google Scholar

[12] T.Ohzuku, Y.Iwakoshi, K.Sawai: J. Electrochem. Soc.140 (1993) 2490. 10.1149/1.2220849 Search in Google Scholar

[13] R.M.Humana, M.G.Ortiz, J.E.Thomas, S.G.Real, M.Sedlarikova, J.Vondrak, A.Visintin: ECS Trans.63 (2014) 1053. 10.1007/s10008-015-3004-7 Search in Google Scholar

[14] Z.G.Yang, J.L.Zhang, M.C.W.Kintner-Meyer, X.C.Lu, D.Choi, J.P.Lemmon, J.Liu: Chem. Rev.111 (2011) 3577. PMid:21375330; 10.1021/cr100290v Search in Google Scholar

[15] Charles de lasC., W.Li: J. Power Sources208 (2012) 74. 10.1016/j.jpowsour.2012.02.013 Search in Google Scholar

[16] J.L.Brian, D.C.Cory, P.R.Ryne: J. Mater. Res.25 (2010) 1636. 10.1557/JMR.2010.0209 Search in Google Scholar

[17] R.A.DiLeo, A.Castiglia, M.J.Ganter, R.E.Rogers, C.D.Cress, R.P.Raffaelle, B.J.Landi: ACS Nano4 (2010) 6121. PMid:20857949; 10.1021/nn1018494 Search in Google Scholar

[18] Z.Xiong, Y.S.Yun, H.-J.Jin: Materials6 (2013) 1138. PMid:28809361; 10.3390/ma6031138 Search in Google Scholar

[19] E.F.Kukovitsky, L.A.Chernozatonskii, S.G.L'vov, N.N.Melnik: Chem. Phys. Lett.266 (1997) 323. 10.1016/S0009-2614(97)00020-1 Search in Google Scholar

[20] E.F.Kukovitsky, S.G.L'vov, N.A.Sainov, V.A.Shustov, L.A.Chernozatonskii: Chem. Phys. Lett.355 (2002) 497. 10.1016/S0009-2614(02)00283-X Search in Google Scholar

[21] S.M.Khantimerov, V.A.Shustov, N.V.Kurbatova, E.F.Kukovitsky, V.L.Matukhin, Y.A.Sakhratov, N.M.Suleimanov: Appl. Phys. A.113 (2013) 597. 10.1007/s00339-013-7697-0 Search in Google Scholar

[22] W.Wang, I.Ruiz, K.Ahmed, H.H.Bay, A.S.George, J.Wang, J.Butler, M.Ozkan, C.S.Ozkan: Small10 (2014) 3389. 10.1002/smll.201400088 Search in Google Scholar

[23] The Rietveld Method, ed. by R.A.Young (International Union of Crystallography, Oxford, University Press, 1995), 312 p. Search in Google Scholar

[24] E.Mittemeijer, U.Welzel: Z. Kristallogr.223 (2008) 552. 10.1524/zkri.2008.1213 Search in Google Scholar

[25] L.Lutterotti, M.Bortolotti, G.Ischia, H.-R.Wenk: Z. Kristallogr. Suppl.26 (2007) 125. 10.1524/zksu.2007.2007.suppl_26.125 Search in Google Scholar

[26] E.Frackowiak, S.Gautier, H.Gaucher, S.Bonnamy, F.Béguin: Carbon37 (1999) 61. 10.1016/S0008-6223(98)00187-0 Search in Google Scholar

[27] Z.H.Yang, H.Q.Wu: Solid State Ionics143 (2001) 173. 10.1016/S0167-2738(01)00852-9 Search in Google Scholar

[28] W.Xing, J.R.Dahn: J. Electrochem. Soc.144 (1997) 1195. 10.1149/1.1837572 Search in Google Scholar

[29] G.T.Wu, C.S.Wang, X.B.Zhang, H.S.Yang, Z.F.Qi, P.M.He. W.Z.Li: J. Electrochem. Soc.146 (1999) 1696. 10.1149/1.1391828 Search in Google Scholar

[30] J.Y.Eom, H.S.Kwon, J.Liu, O.Zhou: Carbon42 (2004) 2589. 10.1016/j.carbon.2004.05.039 Search in Google Scholar

[31] A.Szabó, C.Perri, A.Csató, G.Giordano, D.Vuono, J.Nagy: Materials3 (2010) 3092. 10.3390/ma3053092 Search in Google Scholar

[32] R.W.G.Wyckoff: Crystal Structures, sec. ed., vol. 1, Interscience Publishers, New York (1963). Search in Google Scholar

[33] B.S.Parimalam, A.D.MacIntosh, R.Kadam, B.L.Lucht: J. Phys. Chem.C 121 (2017) 22733. 10.1021/acs.jpcc.7b08433 Search in Google Scholar

[34] C.Ling, R.G.Zhang, K.Takechi, F.Mizuno: J. Phys. Chem.C 118 (2014) 2659126598. 10.1021/jp5093306 Search in Google Scholar

Received: 2018-09-06
Accepted: 2019-04-02
Published Online: 2019-10-04
Published in Print: 2019-10-16

© 2019, Carl Hanser Verlag, München