Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter October 4, 2019

Structural and electrochemical properties of lithiated conical carbon nanotubes as anode materials for lithium ion accumulating systems

  • Nail Suleimanov , Sergey Khantimerov , Krzysztof Kierzek , Vladimir Shustov , Ranis Garipov , Ranis Fatukhov and Vadim Matukhin


Interaction of conical carbon nanotubes with lithium during their electrochemical treatment was studied by galvanostatic measurements. The presence of reversible and irreversible reactions during the Li insertion into conical carbon nanotubes was established. The structural changes occurring in the conical walls of the conical carbon nanotubes in consequence of the lithium intercalation were investigated by using X-ray diffraction. The results obtained show that the lithiation of conical carbon nanotubes is partially reversible and leads to a change in the diffraction peak profile (2θ = 26°) corresponding to the interplanar distance in conical carbon nanotubes. Such changes are associated with the lithium insertion into the interplanar spaces of conical carbon nanotubes.

Correspondence address, Sergey Khantimerov, PhD, Senior Fellow, Zavoisky Physical-Technical Institute, FRC Kazan Scientific Center of RAS, Kazan, Russia, Tel.: +7 843 2319123 (add.5), Fax: +7 843 2725075. E-mail:


[1] J.B.Goodenough, K.-S.Park: J. Am. Chem. Soc.135 (2013) 1167. PMid:23294028; 10.1021/ja3091438Search in Google Scholar

[2] DaDeng: Energy Sci. Eng.3 (2015) 385. 10.1002/ese3.95Search in Google Scholar

[3] E.B.George: J. Electrochem. Soc.164 (2017) 5019. 10.1149/2.0091707jesSearch in Google Scholar

[4] J.Li, R.Zhao, X.He, H.Liu: Ionics15 (2009) 111. 10.1007/s11581-008-0238-8Search in Google Scholar

[5] J.W.Fergus: J. Power Sources195 (2010) 939. 10.1016/j.jpowsour.2009.08.089Search in Google Scholar

[6] J.Xu, S.Dou, H.Liu, L.Dai: Nano Energy2 (2013) 439. 10.1016/j.nanoen.2013.05.013Search in Google Scholar

[7] S.Goriparty, E.Miele, F.De Angelis, E.Di Fabrizio, R. ProiettiZaccaria, C.Capligia: J. Power Sources257 (2014) 421. 10.1016/j.jpowsour.2013.11.103Search in Google Scholar

[8] N.Loeffler, D.Bresser, S.Passerini: Johnson Matthey Technol. Rev.59 (2015) 34. 10.1595/205651314x685824Search in Google Scholar

[9] R.Fong, U.V.Sacken, J.R.Dahn: J. Electrochem. Soc.137 (1990) 2009. 10.1149/1.2086855Search in Google Scholar

[10] Y.P.Wu, E.Rahm, R.Holze: J. Power Sources114 (2003) 228. 10.1016/S0378-7753(02)00596-7Search in Google Scholar

[11] C.Jiang, E.Hosono, H.Zhou: Nano Today1 (2006) 28. 10.1016/S1748-0132(06)70114-1Search in Google Scholar

[12] T.Ohzuku, Y.Iwakoshi, K.Sawai: J. Electrochem. Soc.140 (1993) 2490. 10.1149/1.2220849Search in Google Scholar

[13] R.M.Humana, M.G.Ortiz, J.E.Thomas, S.G.Real, M.Sedlarikova, J.Vondrak, A.Visintin: ECS Trans.63 (2014) 1053. 10.1007/s10008-015-3004-7Search in Google Scholar

[14] Z.G.Yang, J.L.Zhang, M.C.W.Kintner-Meyer, X.C.Lu, D.Choi, J.P.Lemmon, J.Liu: Chem. Rev.111 (2011) 3577. PMid:21375330; 10.1021/cr100290vSearch in Google Scholar

[15] Charles de lasC., W.Li: J. Power Sources208 (2012) 74. 10.1016/j.jpowsour.2012.02.013Search in Google Scholar

[16] J.L.Brian, D.C.Cory, P.R.Ryne: J. Mater. Res.25 (2010) 1636. 10.1557/JMR.2010.0209Search in Google Scholar

[17] R.A.DiLeo, A.Castiglia, M.J.Ganter, R.E.Rogers, C.D.Cress, R.P.Raffaelle, B.J.Landi: ACS Nano4 (2010) 6121. PMid:20857949; 10.1021/nn1018494Search in Google Scholar

[18] Z.Xiong, Y.S.Yun, H.-J.Jin: Materials6 (2013) 1138. PMid:28809361; 10.3390/ma6031138Search in Google Scholar

[19] E.F.Kukovitsky, L.A.Chernozatonskii, S.G.L'vov, N.N.Melnik: Chem. Phys. Lett.266 (1997) 323. 10.1016/S0009-2614(97)00020-1Search in Google Scholar

[20] E.F.Kukovitsky, S.G.L'vov, N.A.Sainov, V.A.Shustov, L.A.Chernozatonskii: Chem. Phys. Lett.355 (2002) 497. 10.1016/S0009-2614(02)00283-XSearch in Google Scholar

[21] S.M.Khantimerov, V.A.Shustov, N.V.Kurbatova, E.F.Kukovitsky, V.L.Matukhin, Y.A.Sakhratov, N.M.Suleimanov: Appl. Phys. A.113 (2013) 597. 10.1007/s00339-013-7697-0Search in Google Scholar

[22] W.Wang, I.Ruiz, K.Ahmed, H.H.Bay, A.S.George, J.Wang, J.Butler, M.Ozkan, C.S.Ozkan: Small10 (2014) 3389. 10.1002/smll.201400088Search in Google Scholar

[23] The Rietveld Method, ed. by R.A.Young (International Union of Crystallography, Oxford, University Press, 1995), 312 p.Search in Google Scholar

[24] E.Mittemeijer, U.Welzel: Z. Kristallogr.223 (2008) 552. 10.1524/zkri.2008.1213Search in Google Scholar

[25] L.Lutterotti, M.Bortolotti, G.Ischia, H.-R.Wenk: Z. Kristallogr. Suppl.26 (2007) 125. 10.1524/zksu.2007.2007.suppl_26.125Search in Google Scholar

[26] E.Frackowiak, S.Gautier, H.Gaucher, S.Bonnamy, F.Béguin: Carbon37 (1999) 61. 10.1016/S0008-6223(98)00187-0Search in Google Scholar

[27] Z.H.Yang, H.Q.Wu: Solid State Ionics143 (2001) 173. 10.1016/S0167-2738(01)00852-9Search in Google Scholar

[28] W.Xing, J.R.Dahn: J. Electrochem. Soc.144 (1997) 1195. 10.1149/1.1837572Search in Google Scholar

[29] G.T.Wu, C.S.Wang, X.B.Zhang, H.S.Yang, Z.F.Qi, P.M.He. W.Z.Li: J. Electrochem. Soc.146 (1999) 1696. 10.1149/1.1391828Search in Google Scholar

[30] J.Y.Eom, H.S.Kwon, J.Liu, O.Zhou: Carbon42 (2004) 2589. 10.1016/j.carbon.2004.05.039Search in Google Scholar

[31] A.Szabó, C.Perri, A.Csató, G.Giordano, D.Vuono, J.Nagy: Materials3 (2010) 3092. 10.3390/ma3053092Search in Google Scholar

[32] R.W.G.Wyckoff: Crystal Structures, sec. ed., vol. 1, Interscience Publishers, New York (1963).Search in Google Scholar

[33] B.S.Parimalam, A.D.MacIntosh, R.Kadam, B.L.Lucht: J. Phys. Chem.C 121 (2017) 22733. 10.1021/acs.jpcc.7b08433Search in Google Scholar

[34] C.Ling, R.G.Zhang, K.Takechi, F.Mizuno: J. Phys. Chem.C 118 (2014) 2659126598. 10.1021/jp5093306Search in Google Scholar

Received: 2018-09-06
Accepted: 2019-04-02
Published Online: 2019-10-04
Published in Print: 2019-10-16

© 2019, Carl Hanser Verlag, München

Downloaded on 8.6.2023 from
Scroll to top button