Accessible Requires Authentication Published by De Gruyter October 4, 2019

High-temperature oxidation resistance behavior of porous Ni-16Cr-9Al materials

Liang Wu, Ge Yang, Yang Xu, Yifeng Xiao, Xi Li, Yanfei Xu, Jinwen Qian, Yan Ou, Minghua Zhang, Qiankun Zhang and Yuehui He


The oxidation behavior of porous Ni-16Cr-9Al alloys at 800 and 1 000 °C was studied using the isothermal temperature oxidation method. The differences in surface morphology, phase and pore structure between oxidized and non-oxidized materials were characterized by means of scanning electron microscopy, X-ray diffraction analysis and mercury intrusion porosimetry. The results revealed that the oxidation rate of the samples which were oxidized for 420 h at 800 °C was 0.012%2 h−1 and the oxidation products were Al2O3 and Cr2O3. The oxidation rate of the samples which were oxidized for 390 h at 1 000 °C was 0.415%2 h−1 and the oxidation products were Al2O3, Cr2O3 and Ni(Cr, Al)2O4. All the oxidation kinetics curves obeyed the parabolic law, exhibiting excellent high temperature oxidation resistance.

Correspondence address, Xi Li, School of Mechanical, Materials, Mechatronic and Biomedical Engineering, University of Wollongong NSW 2522 Australia, Australian Nuclear Science and Technology Organization, Lucas Heights NSW 2234 Australia, Tel.: +6 1450457795, E-mail:


[1] S.H.Choi, S.Y.Kim, J.Y.Yun, Y.M.Kong, B.K.Kim, K.A.Lee: Met. Mater. Int.17 (2011) 301. 10.1007/s12540-011-0418-3 Search in Google Scholar

[2] R.R.Unocic, G.B.Viswanathan, P.M.Sarosi, S.Karthikeyan, J.Li, M.J.Mills, Mater. Sci. Eng., A. 483 (2008) 25. 10.1016/j.msea.2006.08.148 Search in Google Scholar

[3] B.Jankovic, B. Adnadevic, S.Mentus, Thermochim: Acta Mater.456 (2007) 48. 10.1016/j.tca.2007.01.033 Search in Google Scholar

[4] L.Kloc, J.Fiala, J.Cadek: Mater. Sci. Eng.A 202 (1995) 11. 10.1016/0921-5093(95)09813-5 Search in Google Scholar

[5] H.S.Lee, J.S.Jung, K.B.Yoo, E.H.Kim: J. Met. Mater.48 (2010) 277. 10.3365/kjmm.2010.48.04.277 Search in Google Scholar

[6] D.A.Akinlade, W.F.Caley, N.L.Richards, M.C.Chaturvedi: Mater. Sci. Eng.A 488 (2008) 221. 10.1016/j.msea.2007.11.019 Search in Google Scholar

[7] H.Choe, D.C.Dunand: Mater. Sci. Eng.A 384 (2004) 184. 10.1016/j.msea.2004.06.045 Search in Google Scholar

[8] A.Ul–Hamid: Corros. Sci.46 (2004) 27. 10.1016/S0010-938X(03)00100-8 Search in Google Scholar

[9] J.S.Oh, M.C.Shim, M.H.Park, K.A.Lee: Met. Mater. Int.20 (2014) 915. 10.1007/s12540-014-5017-7 Search in Google Scholar

[10] G.J.Davies, S.Zhen: J. Mater. Sci.18 (1983) 1899. 10.1007/bf00554981 Search in Google Scholar

[11] J.Banhart: Mater. Sci.46 (2001) 559. 10.1016/s0921-5093(02)00582-8 Search in Google Scholar

[12] S.K.Mukherjee, G.S.Upadhyaya: Oxid. Met.23 (1985) 177. 10.1007/bf00659902 Search in Google Scholar

[13] A.Bautista, C.Moral, F.Velasco, C.Simal, S.Guzmán: J. Mater. Process. Technol.189 (2007) 344. 10.1016/j.jmatprotec.2007.02.005 Search in Google Scholar

[14] A.Bautista, F.Velasco, M.Campos, M.E.Rabanal, J.M.Torralba: Oxid. Met.59 (2003) 373. 10.1023/a:1023000329514 Search in Google Scholar

[15] A.Bautista, F.Velasco, J.Abenojar: Corros. Sci.45 (2003) 1343. 10.1016/s0010-938x(02)00217-2 Search in Google Scholar

[16] Z.Zheng, Y.Jiang, H.X.Dong, L.M.Tang, Y.H.He, B.Y.Huang: Trans. Nonferrous Met. Soc. China.19 (2009) 581. 10.1016/s1003-6326(08)60316-7 Search in Google Scholar

[17] V.K.Sikka, S.C.Deevi, S.Viswanathan, R.W.Swindeman, M.L.Santella: Intermetallics.8 (2000) 1329. 10.1016/s0966-9795(00)00078-9 Search in Google Scholar

[18] B.P.Bewlay, J.D.Rigney, R.Didomizio. Oxide-forming protective coatings for niobium-based materials. US Patent: us 8247085 (2012). Search in Google Scholar

[19] G.C.Wood: Oxid. Met.2 (1970) 11. 10.1007/bf00603581 Search in Google Scholar

[20] H.P.Tang, Y.Wang, Y.Liu, W.J.Li, C.Han: Journal of Central South University.20 (2013) 3345. 10.1007/s11771-013-1858-3 Search in Google Scholar

[21] H.X.Dong, Y.Jiang, Y.H.He, J.Zou, N.P.Xu, B.Y.Huang, C.T.Liu, P.K.Liaw: Mater. Chem. Phys.122 (2010) 417. 10.1016/j.matchemphys.2010.03.017 Search in Google Scholar

[22] S.Taniguchi, T.Shibata: Oxid. Met.28 (1987) 255. 10.1007/BF00656704 Search in Google Scholar

[23] Y.C.Pan, T.H.Chuang, Y.D.Yao: J. Mater. Sci.26 (1991) 6097. 10.1007/bf01113890 Search in Google Scholar

[24] G.R.Wallwork, A.Z.Hed: Oxid. Met.3 (1971) 171. 10.1007/bf00603485 Search in Google Scholar

[25] H.M.Tawancy, N.Sridhar: Oxid. Met.37 (1992) 143. 10.1007/bf00665187 Search in Google Scholar

[26] Y.Zhao, G.X.Yang, C.Yuan, J.T.Guo, C.S.Liu: Corrosion Science and Protection Technology.27 (2007) 1. 10.3969/j.issn.1002-6495.2007.01.001 Search in Google Scholar

[27] H.P.Tang, Y.Wang, Y.Liu, W.J.Li, C.Han: J. Cent. South Univ.20 (2013) 3345. 10.1007/s11771-013-1858-3 Search in Google Scholar

[28] G.J.Cao, L.Geng, Z.Z.Zheng, M.Naka: Intermetallics.15 (2007) 1672. 10.1016/j.intermet.2007.07.003 Search in Google Scholar

[29] G.F.Chen, H.Y.Lou: Corros. Rev.18 (2000) 195. 10.1515/CORRREV.2000.18.2-3.195 Search in Google Scholar

[30] C.S.Giggins, F.S.Pettit: J. Electrochem. Soc.118 (1971) 1782. 10.1149/1.2407837 Search in Google Scholar

[31] C.B.Sun, G.Y.Fu, Q.Liu: Journal of Materials and Metallurgy.3 (2004) 313. 10.14186/j.cnki.1671-6620.2004.04.016 Search in Google Scholar

Received: 2018-10-08
Accepted: 2019-05-10
Published Online: 2019-10-04
Published in Print: 2019-10-16

© 2019, Carl Hanser Verlag, München