Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter October 4, 2019

High-temperature oxidation resistance behavior of porous Ni-16Cr-9Al materials

  • Liang Wu , Ge Yang , Yang Xu , Yifeng Xiao , Xi Li , Yanfei Xu , Jinwen Qian , Yan Ou , Minghua Zhang , Qiankun Zhang and Yuehui He

Abstract

The oxidation behavior of porous Ni-16Cr-9Al alloys at 800 and 1 000 °C was studied using the isothermal temperature oxidation method. The differences in surface morphology, phase and pore structure between oxidized and non-oxidized materials were characterized by means of scanning electron microscopy, X-ray diffraction analysis and mercury intrusion porosimetry. The results revealed that the oxidation rate of the samples which were oxidized for 420 h at 800 °C was 0.012%2 h−1 and the oxidation products were Al2O3 and Cr2O3. The oxidation rate of the samples which were oxidized for 390 h at 1 000 °C was 0.415%2 h−1 and the oxidation products were Al2O3, Cr2O3 and Ni(Cr, Al)2O4. All the oxidation kinetics curves obeyed the parabolic law, exhibiting excellent high temperature oxidation resistance.


Correspondence address, Xi Li, School of Mechanical, Materials, Mechatronic and Biomedical Engineering, University of Wollongong NSW 2522 Australia, Australian Nuclear Science and Technology Organization, Lucas Heights NSW 2234 Australia, Tel.: +6 1450457795, E-mail:

References

[1] S.H.Choi, S.Y.Kim, J.Y.Yun, Y.M.Kong, B.K.Kim, K.A.Lee: Met. Mater. Int.17 (2011) 301. 10.1007/s12540-011-0418-3Search in Google Scholar

[2] R.R.Unocic, G.B.Viswanathan, P.M.Sarosi, S.Karthikeyan, J.Li, M.J.Mills, Mater. Sci. Eng., A. 483 (2008) 25. 10.1016/j.msea.2006.08.148Search in Google Scholar

[3] B.Jankovic, B. Adnadevic, S.Mentus, Thermochim: Acta Mater.456 (2007) 48. 10.1016/j.tca.2007.01.033Search in Google Scholar

[4] L.Kloc, J.Fiala, J.Cadek: Mater. Sci. Eng.A 202 (1995) 11. 10.1016/0921-5093(95)09813-5Search in Google Scholar

[5] H.S.Lee, J.S.Jung, K.B.Yoo, E.H.Kim: J. Met. Mater.48 (2010) 277. 10.3365/kjmm.2010.48.04.277Search in Google Scholar

[6] D.A.Akinlade, W.F.Caley, N.L.Richards, M.C.Chaturvedi: Mater. Sci. Eng.A 488 (2008) 221. 10.1016/j.msea.2007.11.019Search in Google Scholar

[7] H.Choe, D.C.Dunand: Mater. Sci. Eng.A 384 (2004) 184. 10.1016/j.msea.2004.06.045Search in Google Scholar

[8] A.Ul–Hamid: Corros. Sci.46 (2004) 27. 10.1016/S0010-938X(03)00100-8Search in Google Scholar

[9] J.S.Oh, M.C.Shim, M.H.Park, K.A.Lee: Met. Mater. Int.20 (2014) 915. 10.1007/s12540-014-5017-7Search in Google Scholar

[10] G.J.Davies, S.Zhen: J. Mater. Sci.18 (1983) 1899. 10.1007/bf00554981Search in Google Scholar

[11] J.Banhart: Mater. Sci.46 (2001) 559. 10.1016/s0921-5093(02)00582-8Search in Google Scholar

[12] S.K.Mukherjee, G.S.Upadhyaya: Oxid. Met.23 (1985) 177. 10.1007/bf00659902Search in Google Scholar

[13] A.Bautista, C.Moral, F.Velasco, C.Simal, S.Guzmán: J. Mater. Process. Technol.189 (2007) 344. 10.1016/j.jmatprotec.2007.02.005Search in Google Scholar

[14] A.Bautista, F.Velasco, M.Campos, M.E.Rabanal, J.M.Torralba: Oxid. Met.59 (2003) 373. 10.1023/a:1023000329514Search in Google Scholar

[15] A.Bautista, F.Velasco, J.Abenojar: Corros. Sci.45 (2003) 1343. 10.1016/s0010-938x(02)00217-2Search in Google Scholar

[16] Z.Zheng, Y.Jiang, H.X.Dong, L.M.Tang, Y.H.He, B.Y.Huang: Trans. Nonferrous Met. Soc. China.19 (2009) 581. 10.1016/s1003-6326(08)60316-7Search in Google Scholar

[17] V.K.Sikka, S.C.Deevi, S.Viswanathan, R.W.Swindeman, M.L.Santella: Intermetallics.8 (2000) 1329. 10.1016/s0966-9795(00)00078-9Search in Google Scholar

[18] B.P.Bewlay, J.D.Rigney, R.Didomizio. Oxide-forming protective coatings for niobium-based materials. US Patent: us 8247085 (2012).Search in Google Scholar

[19] G.C.Wood: Oxid. Met.2 (1970) 11. 10.1007/bf00603581Search in Google Scholar

[20] H.P.Tang, Y.Wang, Y.Liu, W.J.Li, C.Han: Journal of Central South University.20 (2013) 3345. 10.1007/s11771-013-1858-3Search in Google Scholar

[21] H.X.Dong, Y.Jiang, Y.H.He, J.Zou, N.P.Xu, B.Y.Huang, C.T.Liu, P.K.Liaw: Mater. Chem. Phys.122 (2010) 417. 10.1016/j.matchemphys.2010.03.017Search in Google Scholar

[22] S.Taniguchi, T.Shibata: Oxid. Met.28 (1987) 255. 10.1007/BF00656704Search in Google Scholar

[23] Y.C.Pan, T.H.Chuang, Y.D.Yao: J. Mater. Sci.26 (1991) 6097. 10.1007/bf01113890Search in Google Scholar

[24] G.R.Wallwork, A.Z.Hed: Oxid. Met.3 (1971) 171. 10.1007/bf00603485Search in Google Scholar

[25] H.M.Tawancy, N.Sridhar: Oxid. Met.37 (1992) 143. 10.1007/bf00665187Search in Google Scholar

[26] Y.Zhao, G.X.Yang, C.Yuan, J.T.Guo, C.S.Liu: Corrosion Science and Protection Technology.27 (2007) 1. 10.3969/j.issn.1002-6495.2007.01.001Search in Google Scholar

[27] H.P.Tang, Y.Wang, Y.Liu, W.J.Li, C.Han: J. Cent. South Univ.20 (2013) 3345. 10.1007/s11771-013-1858-3Search in Google Scholar

[28] G.J.Cao, L.Geng, Z.Z.Zheng, M.Naka: Intermetallics.15 (2007) 1672. 10.1016/j.intermet.2007.07.003Search in Google Scholar

[29] G.F.Chen, H.Y.Lou: Corros. Rev.18 (2000) 195. 10.1515/CORRREV.2000.18.2-3.195Search in Google Scholar

[30] C.S.Giggins, F.S.Pettit: J. Electrochem. Soc.118 (1971) 1782. 10.1149/1.2407837Search in Google Scholar

[31] C.B.Sun, G.Y.Fu, Q.Liu: Journal of Materials and Metallurgy.3 (2004) 313. 10.14186/j.cnki.1671-6620.2004.04.016Search in Google Scholar

Received: 2018-10-08
Accepted: 2019-05-10
Published Online: 2019-10-04
Published in Print: 2019-10-16

© 2019, Carl Hanser Verlag, München

Downloaded on 5.6.2023 from https://www.degruyter.com/document/doi/10.3139/146.111822/html
Scroll to top button