Abstract
The microstructures and properties of austenitic stainless steel with varying nitrogen content after welding thermal simulation were investigated. The results indicate that the nitrogen fraction has a considerable influence on the phase composition and properties. Low nitrogen fraction leads to formation of δ-ferrite. After a welding thermal cycle, the number of annealing twins of high nitrogen-containing steel decreases, M23C6 precipitates, and fine M23C6 are observed. For low nitrogen-containing steel, large-size M23C6 and elongated δ-ferrite are formed, which deteriorate the ductility. Meanwhile, equilibrium phase calculations also reveal the inhibiting effect of nitrogen on M23C6 and δ-ferrite. Furthermore, susceptibility to intergranular attack by 10 % oxalic acid solution was detected, and the synergistic effect of coherent twin boundaries, M23C6, and δ-ferrite leads to low resistance to corrosion for low nitrogen-containing steel.
References
[1] F.Gillemot: Int. J. Nucl. Knowl. Manag.4 (2010) 265–278. 10.1504/IJNKM.2010.037070Search in Google Scholar
[2] N.R.Baddoo: J. Constr. Steel Res.64 (2008) 1199–1206. 10.1016/j.jcsr.2008.07.011Search in Google Scholar
[3] M.O.Speidel: Mater. Werkst.37 (2006) 875–880. 10.1002/mawe.200600068Search in Google Scholar
[4] K.H.Lo, C.H.Shek, J.K.L.Lai: Mater. Sci. Eng. R Rep.65 (2009) 39–104. 10.1016/j.mser.2009.03.001Search in Google Scholar
[5] G.Saller, K.Spiradek-Hahn, C.Scheu, H.Clemens: Mater. Sci. Eng.A 427 (2006) 246–254. 10.1016/j.msea.2006.04.020Search in Google Scholar
[6] J.W.Simmons: Mater. Sci. Eng.A 207 (1996) 159–169. 10.1016/0921-5093(95)09991-3Search in Google Scholar
[7] U.K.Mudali, P.Shankar, S.Ningshen, R.K.Dayal, H.S.Khatak, B.Raj: Corros. Sci.44 (2002) 2183–2198. 10.1016/S0010-938X(02)00035-5Search in Google Scholar
[8] M.Talha, C.K.Behera, O.P.Sinha: Mater. Sci. Eng.C 33 (2013) 3563–3575. PMid:23910251; 10.1016/j.msec.2013.06.002Search in Google Scholar PubMed
[9] H.Zhang, D.Wang, P.Xue, L.H.Wu, D.R.Ni, Z.Y.Ma: Mater. Des.110 (2016) 802–810. 10.1016/j.matdes.2016.08.048Search in Google Scholar
[10] I.Woo, Y.Kikuchi: ISIJ Int.42 (2002) 1334–1343. 10.2355/isijinternational.42.1334Search in Google Scholar
[11] L.Zhao, Z.L.Tian, Y.Peng: Sci. Technol. Weld Join.14 (2009) 87–92. 10.1179/136217108X343939Search in Google Scholar
[12] Y.Miyano, H.Fujii, Y.Sun, Y.Katada, S.Kuroda, O.Kamiya: Mater. Sci. Eng.A 528 (2011) 2917–2921. 10.1016/j.msea.2010.12.071Search in Google Scholar
[13] R.Mohammed, G.M.Reddy, K.S.Rao: Trans. Indian Inst. Met.69 (2016) 1919–1927. 10.1007/s12666-016-0851-6Search in Google Scholar
[14] J.Moon, H.Ha, T.Lee: Mater. Charact.82 (2013) 113–119. 10.1016/j.matchar.2013.05.011Search in Google Scholar
[15] J.Moon, T.Lee, S.Park, J.Jang, M.Jang, H.Ha, B.Hwang: Metall. Mater. Trans.A 44 (2013) 3069–3076. 10.1007/s11661-013-1682-2Search in Google Scholar
[16] J.Moon, T.H.Lee, H.U.Hong: Metall. Mater. Trans.A 46 (2015) 1437–1442. 10.1007/s11661-015-2771-1Search in Google Scholar
[17] M.Ogawa, K.Hiraoka, Y.Katada, M.Sagara, S.Tsukamoto: ISIJ Int.42 (2002) 1391–1398. 10.2355/isijinternational.42.1391Search in Google Scholar
[18] M.Mukherjee, T.K.Pal: Mater. Charact.131 (2017) 406–424. 10.1016/j.matchar.2017.07.028Search in Google Scholar
[19] V.G.Gavriljuk: ISIJ Int.36 (1996) 738–745. 10.2355/isijinternational.36.738Search in Google Scholar
[20] V.G.Gavriljuk, B.D.Shanina, H.Berns: Acta Mater.48 (2000) 3879–3893. 10.1016/S1359-6454(00)00192-0Search in Google Scholar
[21] M.Ojima, Y.Adachi, Y.Tomota, K.lkeda, T.Kamiyama, Y.Katada: Mater. Sci. Eng.A 527 (2009) 16–24. 10.1016/j.msea.2009.07.066Search in Google Scholar
[22] P.Villechaise, L.Sabatier, J.C.Girard: Mater. Sci. Eng.A 323 (2002) 377–385. 10.1016/S0921-5093(01)01381-8Search in Google Scholar
[23] M.D.Roach, S.I.Wright, J.E.Lemons, L.D.Zardiackas: Mater. Sci. Eng.A 586 (2013) 382–391. 10.1016/j.msea.2013.08.027Search in Google Scholar
[24] C.Blochwitz, W.Tirschler: Mater. Sci. Eng.A 339 (2003) 318–327. 10.1016/S0921-5093(02)00126-0Search in Google Scholar
[25] G.I.Taylor, R.S.F, C.F.Elam, D.Sc: P. R. Soc. Lond.A 761 (1926) 337–361. 10.1098/rspa.1926.0116Search in Google Scholar
[26] J.W.Christian: Metall. Trans.A 14 (1983) 1237–1256. 10.1007/BF02664806Search in Google Scholar
[27] G.Taylor: Prog. Mater. Sci.36 (1992) 29–61. 10.1016/0079-6425(92)90004-QSearch in Google Scholar
[28] M.S.Duesbery, V.Vitek: Acta Mater.46 (1998) 1481–1492. 10.1016/S1359-6454(97)00367-4Search in Google Scholar
[29] H.Ghassemi-Armaki, R.Maaß, S.P.Bhat, S.Sriram, J.R.Greer, K.S.Kumar: Acta Mater.62 (2014) 197–211. 10.1016/j.actamat.2013.10.001Search in Google Scholar
[30] E.Y.Guo, H.X.Xie, S.S.Singh, A.Kirubanandham, T.Jing, N.Chawla: Mater. Sci. Eng.A 598 (2014) 98–105. 10.1016/j.msea.2014.01.002Search in Google Scholar
[31] C.Du, F.Maresca, M.G.D.Geers, J.P.M.Hoefnagels: Acta Mater.146 (2018) 314–327. 10.1016/j.actamat.2017.12.054Search in Google Scholar
[32] A.B.Rhouma, T.Amadou, H.Sidhom, C.Braham: J. Alloy Compd.708 (2017) 871–886. 10.1016/j.jallcom.2017.02.273Search in Google Scholar
[33] L.Zheng, X.Hu, X.Kang, D.Li: Mater. Des.78 (2015) 42–50. 10.1016/j.matdes.2015.04.016Search in Google Scholar
[34] S.Das, M.Mukherjee, T.K.Pal: Eng. Fail. Anal.54 (2015) 90–102. 10.1016/j.engfailanal.2015.04.010Search in Google Scholar
[35] R.Valerie: Acta Mater.52 (2004) 4067–4081. 10.1016/j.actamat.2004.05.031Search in Google Scholar
[36] F.Shi, P.C.Tian, N.Jia, Z.H.Ye, Y.Qi, C.M.Liu, X.W.Li: Corros. Sci.107 (2016) 49–59. 10.1016/j.corsci.2016.02.019Search in Google Scholar
[37] C.Hu, S.Xia, H.Li, T.Liu, B.Zhou, W.Chen, N.Wang: Corros. Sci.53 (2011) 1880–1886. 10.1016/j.corsci.2011.02.005Search in Google Scholar
[38] K.Kim, J.Kang, S.Kim: Mater. Sci. Eng.A 712 (2018) 114–121. 10.1016/j.msea.2017.11.099Search in Google Scholar
[39] M.Rahmani, A.Eghlimi, M.Shamanian: J. Mater. Eng. Perform.23 (2014) 3745–3753. 10.1007/s11665-014-1136-zSearch in Google Scholar
© 2019, Carl Hanser Verlag, München