Accessible Requires Authentication Published by De Gruyter October 4, 2019

Influence of inter-object relations on the microstructural evolution during hot upsetting of a steel billet determined by numerical simulation

Antonio Lourenço Batista de Souza and Oscar Balancin


The aim of this work was to study the effect of the interaction between tools and workpiece on the plastic behavior and microstructural evolution of a carbon steel during hot deformation of a cylinder with diameter of 600 mm and height of 1 000 mm. The metallurgical processing was simulated applying the finite elements method. Temperature, deformation and strain rate gradients, recrystallized volume fraction, and grain size distribution were determined using this technique. The data obtained shown that the level of friction and the heat transfer between tools and material have strong influence on the deformation and microstructure gradients, creating large grain size heterogeneities.

Correspondence address, PhD. Antonio Lourenço Batista de Souza, Departamento de Engenharia de Materiais, Universidade Federal de São Carlos, Washington Luis highway, km 235, São Carlos, 13565-905, Brazil, e-mail:


[1] W.A.Backofen: Deformation Processing, Addison-Wesley Publishing Company, Massachusetts (1972). Search in Google Scholar

[2] P.J.Hurley, B.C.Muddle, P.D.Hodgson: Metall. Mater. Trans.A 32 (2001) 1507. 10.1007/s11661-001-0238-z Search in Google Scholar

[3] C.M.Sellars: Mater. Sci. Technol.6 (1990) 1072. 10.1179/mst.1990.6.11.1072 Search in Google Scholar

[4] S.H.Cho, K.B.Kang, J.J.Jonas: ISIJ Int.41 (2001) 63. 10.2355/isijinternational.41.63 Search in Google Scholar

[5] F.Siciliano, J.J.Jonas: Metall. Mater. Trans.A 31 (2000) 511. 10.1007/s11661-000-0287-8 Search in Google Scholar

[6] G.Z.Quan, G.S.Li, T.Chen, Y.X.Wang, Y.W.Zhang, J.Zhou: Mater. Sci. Eng.A 528 (2011) 4643. 10.1016/j.msea.2011.02.090 Search in Google Scholar

[7] I.Salvatori, T.Inoue, K.Nagai: ISIJ Int.42 (2002) 744. 10.2355/isijinternational.42.744 Search in Google Scholar

[8] R.C.Souza, E.S.Silva, A.M.JorgeJr., J.M.Cabrera, O.Balancin: Mater. Sci. Eng.A 582 (2013) 96. 10.1016/j.msea.2013.06.037 Search in Google Scholar

[9] H.Ding, K.Hirai, T.Homma, S.Kamado: Comput. Mater. Sci47 (2010) 919. 10.1016/j.commatsci.2009.11.024 Search in Google Scholar

[10] H.Jiang, L.Yang, J.Dong, M.Zhang, Z.Yao: Mater. Des.104 (2016) 162. 10.1016/j.matdes.2016.05.033 Search in Google Scholar

[11] X.Li, M.Wang, F.Du: J. Iron. Steel Res. Int.15 (2008) 42. 10.1016/S1006-706X(08)60142-9 Search in Google Scholar

[12] X.Li, M.Wang, F.Du: Mater. Sci. Eng.A 408 (2005) 33. 10.1016/j.msea.2005.04.065 Search in Google Scholar

[13] Y.S.Jang, D.C.Ko, B.M.Kim: J. Mater. Process. Technol.101 (2000) 85. 10.1016/S0924-0136(99)00460-4 Search in Google Scholar

[14] DEFORM 3D Version 10.1, User Guide. Scientific Forming Technology Corporation, Columbus, Ohio, USA. Search in Google Scholar

[15] H.J.McQueen, N.D.Ryan: Mater. Sci. Eng.A 322 (2002) 43. 10.1016/S0921-5093(01)01117-0 Search in Google Scholar

[16] A.Cingara, L. St.Germaine, H.J.McQueen, in: A.Deardo (Ed.), Processing Microstructure and Properties of HSLA Steels, Met. Soc. AIME, Warrendale, PA, 1988, p. 91. Search in Google Scholar

[17] K.P.Rao, E.B.Hawbolt, H.J.McQueen, DBaragar: Can. Metall. Q.32 (1993) 165. 10.1179/cmq.1993.32.2.165 Search in Google Scholar

[18] R.M.Cutrim, S.F.Rodrigues, G.S.Reis, E.S.Silva, C.AranasJr., O.Balancin: J. Mater. Eng. Perform.25 (2016) 5102. 10.1007/s11665-016-2365-0 Search in Google Scholar

[19] P.D.Hodgson, R.K.Gibbs: ISIJ Int.32 (1992) 1329. 10.2355/isijinternational.32.1329 Search in Google Scholar

[20] C.M.Sellars, in: C.M.Sellars, G.Davies (Eds.), Hot Working and Forming Processes, The Metals Soc., London, 1980, p. 3. Search in Google Scholar

[21] T.Senuma, H.Yada in: N.Hansen et al. (Eds.), 7th Riso Int. Symp., Riso, Roskilde, Denmark, 1986, p. 547. Search in Google Scholar

[22] H.Yada, in: G.E.Ruddle, A.F.Crawley (Eds.), Proc. Int. Symp. On Accelerated Cooling of Rolled Steel, Pergamon, 1988, p. 105. Search in Google Scholar

[23] P.D.Hodgson, L.O.Hazeldon, D.L.Matthewa, R.E.Gloss, in: M.Korchynsky et al. (Eds.), Microalloying’95, ISS of AIME, Warrendale, PA USA, 1995, p. 341. Search in Google Scholar

[24] W.Roberts, A.Sandberg, T.Siwecki, T.Werlefors: Int. Conf. Tech. Applications of HSLA Steels, ASM, Philadelphia, PA, 1983, p. 67. Search in Google Scholar

[25] S.Kim, Y.Lee, B.L.Jang: Mater. Sci. Eng.A 357 (2001) 235. 10.1016/S0921-5093(03)00165-5 Search in Google Scholar

[26] H.Grass, C.Krempaszky, T.Reip, E.Werner: Comput. Mater. Sci28 (2003) 469. 10.1016/j.commatsci.2003.06.003 Search in Google Scholar

[27] M.P.Phaniraj, B.B.Behera, A.K.Lahiri: J. Mater. Process. Technol.178 (2006) 388. 10.1016/j.jmatprotec.2006.03.173 Search in Google Scholar

[28] Y.Xu, Y.Yu, X.Liu, G.Wang: J. Iron. Steel Res. Int.14 (2007) 42. 10.1016/S1006-706X(07)60088-0 Search in Google Scholar

[29] M.Wang, X.Zang, X.Li, F.Du: J. Iron. Steel Res. Int.14 (2007) 30. 10.1016/S1006-706X(07)60039-9 Search in Google Scholar

[30] A.L.I.Moraes, O.Balancin: Mater. Res.18 (2015) 92. 10.1590/1516-1439.273114 Search in Google Scholar

[31] M.B.R.Silva, J.Gallego, J.M.Cabrera, O.Balancin, A.M.JorgeJr.: Mater. Sci. Eng.A 637 (2015) 189. 10.1016/j.msea.2015.04.049 Search in Google Scholar

Received: 2018-11-19
Accepted: 2019-05-10
Published Online: 2019-10-04
Published in Print: 2019-10-16

© 2019, Carl Hanser Verlag, München