Abstract
It was shown that new high-manganese austenitic steels can be used as an alternative to conventional Ni–Cr austenitic steels especially in vacuum vessels. In this study, a nickel-free austenitic steel with chemical composition of 24 wt.% Mn, 10 wt.% Cr, 0.13 wt.% C and trace elements of Si, Ti, V, W, and Al was hot-rolled at 950 and 1100 °C to different strains. Microscopic observations, X-ray diffraction, tensile, impact and microhardness tests were performed to characterize the microstructural aspects and mechanical properties. A small amount of chromium carbide was found on the grain boundaries of this fully austenitic steel. The results showed that the microstructure and mechanical properties of hot rolled manganese austenitic steel are affected by the dynamic recrystallization and twinning phenomena. Also, by changing the grain morphology from equiaxed to elongated, strength and hardness increased, and the impact toughness and ductility were reduced.
References
[1] D.S.Bae, S.P.Lee, Y.R.Cho, H.Takahashi: J. Trans. Nonferrous Met. Soc. China.21 (2011) 58. 10.1016/S1003-6326(11)61061-3Search in Google Scholar
[2] D.S.Bae, S.H.Nahm, H.M.Lee, H.Kinoshita, T.Shibayama, H.Takahashi: J. Nucl Mater.329–333 (2004) 1038. 10.1016/j.jnucmat.2004.04.131Search in Google Scholar
[3] S.Saito, K.Fukaya, S.Ishiyama, M.Eto, I.Sato, M.Kusuhashi, T.Hatakeyama, H.Takahashi, M.Kikuchi: J Nucl Mater.283–287 (2000) 593. 10.1016/S0022-3115(00)00088-XSearch in Google Scholar
[4] D.S.Bae, S.P.Lee, J.K.Lee, U.B.Baek, S.H.Nahm, H.Takahashi: J. Fusion Eng Des.87 (2012) 1025. 10.1016/j.fusengdes.2012.02.077Search in Google Scholar
[5] S.R.Chen, H.A.Davies, W.M.Rainforth: J. Acta Mater.47 (18) (1999) 4555. 10.1016/S1359-6454(99)00334-1Search in Google Scholar
[6] S.Yan, X.Liu, W.J.Liu, H.Lan, H.Wu: J. MSEA.640 (2015) 137. 10.1016/j.msea.2015.05.058Search in Google Scholar
[7] N.Igata, T.Fujiga, H.Yumoto: J. Nucl Mater.179–181 (1991) 656. 10.1016/0022-3115(91)90174-6Search in Google Scholar
[8] V.Coen, H.Kolbe, L.Orecchia, M. DellaRossa: J. FUSION ENG DES.14 (1991) 309. 10.1016/0920-3796(91)90014-HSearch in Google Scholar
[9] G.L.Edgemon, P.F.Tortoreili, G.E.C.Bell: J. Nucl Mater.191–194 (1992) 997. 10.1016/0022-3115(92)90624-TSearch in Google Scholar
[10] M.Onozuka, T.Saida, S.Hirai, M.Kusuhashi, I.Sato, T.Hatakeyama: J. Nucl Mater.255 (1998) 128. 10.1016/S0022-3115(98)00031-2Search in Google Scholar
[11] M.Fodefiki, H.Ledbetter: J. Magn. Magn. Mater.110 (1992) 185. 10.1016/0304-8853(92)90031-ISearch in Google Scholar
[12] P.Sahu, S.K.Shee, A.S.Hamada, L.Rovatti, T.Sahu, B.Mahato, S. GhoshChowdhury, D.A.Porter, L.P.Karjalainen: J. Acta Mater.60 (2012) 6907. 10.1016/j.actamat.2012.07.055Search in Google Scholar
[13] G.E.Totten, Steel Heat Treatment Handbook, Metallurgy and technologies, Second edition, CRC PRESS (2006). 10.1201/9781482293029Search in Google Scholar
[14] R.L.Klueh, P.J.Maziasz, and E.H.Lee: J. MSEA.102 (1988) 115. 10.1016/0025-5416(88)90539-3Search in Google Scholar
[15] S.Lee, C.Y.Lee, Y.K.Lee: J. Alloys Compd.628 (2015) 46. 10.1016/j.jallcom.2014.12.134Search in Google Scholar
[16] H.Idrissi, L.Ryelandt, M.Veron, D.Schryvers, P.J.Jacques: J. Scr. Mater.60 (2009) 941. 10.1016/j.scriptamat.2009.01.040Search in Google Scholar
[17] Y.-K.Lee, S.-J.Lee, J.Han: J. Mater. Sci. Technol.32 (2016) 1. 10.1080/02670836.2015.1114252Search in Google Scholar
[18] A.S.Hamada, L.P.Karjalainen, R.D.K.Misra, J.Talonen: J. MSEA.559 (2013) 336. 10.1016/j.msea.2012.08.108Search in Google Scholar
[19] S.-J.Lee, H.Fujii, K.Ushioda: J. Alloys Compd.749 (2018) 776. 10.1016/j.jallcom.2018.03.296Search in Google Scholar
[20] S.Allain, J.-P.Chateau, O.Bouaziz, S.Migot, N.Guelton: J. MSEA.387–389 (2004) 158. 10.1016/j.msea.2004.01.059Search in Google Scholar
[21] Y.S.Zhang, X.Lu, X.Tian, Z.Qin: J. MSEA.334 (2002) 19. 10.1016/S0921-5093(01)01781-6Search in Google Scholar
[22] A.F.Padilha, P.R.Rios: J. ISIJ Int.42 (2002) 325. 10.2355/isijinternational.42.325Search in Google Scholar
[23] H.J.Goldschmidt, Interstitial alloys, Butterworth & Co. (Publishers) Ltd. (1967). 10.1007/978-1-4899-5880-8Search in Google Scholar
[24] D.A.Porter, K.E.Easterling, M.Sherif, Phase Transformations in Metals and Alloys, Third Edition, CRC Press (2009). 10.1201/9781439883570Search in Google Scholar
[25] S.Buytoz: J. Mater. Lett.60 (2006) 605. 10.1016/j.matlet.2005.09.046Search in Google Scholar
[26] E.Karantzalis, A.Lekatou, H.Mavros: Int J. Cast Metal Res.22 (2009) 448. 10.1179/174313309X436637Search in Google Scholar
[27] Y.Li, Y.Gao, B.Xiao, T.Min, Y.Yang, S.Ma, D.Yi: J. Alloys Compd.509 (2011) 5242. 10.1016/j.jallcom.2011.02.009Search in Google Scholar
[28] H.O.Pierson, Handbook of refractory carbides and nitrides, Properties, Characteristics, Processing and Applications, Noyes Publications (1996). 10.1016/B978-081551392-6.50001-5Search in Google Scholar
[29] K.Wieczerzak, P.Bala, R.Dziurka, T.Tokarski, G.Cios, T.Koziel, L.Gondek: J. Alloys Compd.698 (2017) 673. 10.1016/j.jallcom.2016.12.252Search in Google Scholar
[30] F.J.Humphreys, M.Hatherly, Recrystallization and related annealing phenomena, Second edition, Elsevier (2004). DOI:doi.org/10.1016/B978-0-08-044164-1.X5000-2. 10.1016/B978-008044164-1/50005-0Search in Google Scholar
[31] H.J.McQueen, S.Yue, N.D.Ryan, E.Fry: J Mater Process Technol.53 (1995) 293. 10.1016/0924-0136(95)01987-PSearch in Google Scholar
[32] E.I.Poliak, J.J.Jonas: J. ISIJ.43 (2003) 684. 10.2355/isijinternational.43.684Search in Google Scholar
[33] X.He, Z.Yu, X.Lai: Comput. Mater. Sci.44 (2008) 760. 10.1016/j.commatsci.2008.05.021Search in Google Scholar
[34] H.K.D.H.Bhadeshia: J MATER SCI TECHNOL.26 (2010) 379. 10.1179/026708310X12635619988302Search in Google Scholar
[35] D.Sui, H.Zhang, H.Zhu, Z.Zhu, Z.Cui: J. Iron Steel Res Int.24 (2017) 529. 10.1016/S1006-706X(17)30080-8Search in Google Scholar
[36] P.Hahner: J. Acta Mater.44 (1996) 2345. 10.1016/1359-6454(95)00364-9Search in Google Scholar
[37] G.Laplanche, A.Kostka, O.M.Horst, G.Eggeler, E.P.George: J. ACTA MATER.118 (2016) 152. 10.1016/j.actamat.2016.07.038Search in Google Scholar
[38] R.Mohammadzadeh, M.Mohammadzadeh: J. MSEA.747 (2019) 265. 10.1016/j.msea.2018.11.085Search in Google Scholar
[39] A.Irastorza-Landa, N.Grilli1, H.V.Swygenhoven: J. Model. Simul. Mater. Sci. Eng.25 (2017) 055010. 10.1088/1361-651X/aa6e24Search in Google Scholar
[40] U.Messerschmidt, Dislocation Dynamics During Plastic Deformation, Springer Series in Materials Science, Springer-Verlag Berlin Heidelberg (2010). 10.1007/978-3-642-03177-9Search in Google Scholar
[41] M.A.Meyers, K.K.Chawla, Mechanical Behavior of Materials, Cambridge university press, (2009). 10.1017/CBO9780511810947Search in Google Scholar
[42] A.Ma, F.Roters: J. ACTA MATER.52 (2004) 3603. 10.1016/j.actamat.2004.04.012Search in Google Scholar
[43] A.Ma, F.Roters, D.Raabe: J. Acta Mater.54 (2006) 2169. 10.1016/j.actamat.2006.01.005Search in Google Scholar
[44] G.Z.Voyiadjis, F.H.Abed: J. Arch. Mech.57 (2005) 299.Search in Google Scholar
[45] Y.S.Chen, W.Choi, S.Papanikolaou, J.P.Sethna: J. Phys Rev Lett.105 (2010) 105501. PMid:20867529; 10.1103/PhysRevLett.105.105501Search in Google Scholar
[46] S.Sandfeld, M.Zaiser: J. Model. Simul. Mater. Sci. Eng.23 (2015) 065005. 10.1088/0965-0393/23/6/065005Search in Google Scholar
[47] G.Dhanaraj, K.Byrappa, V.Prasad, M.Dudley, Handbook of Crystal Growth, Springer-Verlag Berlin Heidelberg (2010). 10.1007/978-3-540-74761-1Search in Google Scholar
[48] A.Luft: J. PHYS STATUS SOLIDI B.49 (1970) 429. 10.1002/pssb.19700420143Search in Google Scholar
[49] N.Igata, T.Fujiga, H.Yumoto: J. Nucl Mater.179–181 (1991) 656. 10.1016/0022-3115(91)90174-6Search in Google Scholar
[50] B.Hwang, S.-J.Kim: J. MSEA.531 (2012) 182. 10.1016/j.msea.2011.10.047Search in Google Scholar
[51] W.M.Dawson, F.R.Sale: J. Metall. Mater. Trans.8 (1977) 15. 10.1007/BF02677258Search in Google Scholar
© 2019, Carl Hanser Verlag, München