Accessible Requires Authentication Published by De Gruyter October 23, 2019

Effect of in-situ formation of AlP on solidification of hypereutectic Al–Si alloy

Shuying Chen, Lei Zhang, Xudong Yue and Guowei Chang


The effects of in-situ AlP formation on the solidification process of an Al-20 %Si alloy were studied by examining the change law of the solidification microstructures after the addition of Cu–P alloy to the melt and stirring. During the early stage of stirring, the eutectic Si was clearly refined and Si mainly existed in a point-like shape. During the middle stage of stirring, the typical eutectic microstructure disappeared, and the microstructure consisted of fine primary Si uniformly distributed in the α matrix. Many AlP precipitates with sizes near the critical nucleation radius of primary Si were formed after the Cu–P alloy was dissolved in the Al-20 %Si alloy and stirred. These AlP precipitates became the nuclei of the primary and eutectic Si. The Si-poor layers around the primary Si provided the conditions necessary for the precipitation of the primary α phases when the primary Si grew. For finer primary Si, the distance between the primary Si was reduced, and lower temperature facilitated the formation of a complete α loop or continuous α phases around the primary Si. During the eutectic reaction, the ultrafine AlP caused the eutectic Si phases to nucleate alone and grow; the eutectic α phases grew based on the primary α phases, which resulted in the formation of divorced eutectic microstructures.

Correspondence address, Professor Shuying Chen, School of Materials Science and Engineering, Liaoning University of Technology, Shiying Street, Jinzhou, 121001, P. R. China, Tel: +86-0416-4199650, Fax: +86-0416-4198809, E-mail:


[1] M.Zuo, X.F.Liu: J. Inorg. Organomet. Polym.22 (2012) 64. 10.1007/s10904-011-9516-4 Search in Google Scholar

[2] Q.L.Wang, H.R.Geng, M.Zuo, F.Long, X.Peng: Sci. Technol.29 (2013) 1233. 10.1179/1743284713Y.0000000267 Search in Google Scholar

[3] A.Q.Wang, L.J.Zhang, J.P.Xie: J. Rare Earths31 (2013) 522. 10.1016/S1002-0721(12)60313-5 Search in Google Scholar

[4] W.W.Ding, T.D.Xia, W.J.Zhao: Materials.7 (2014) 1188. 28788509 10.3390/ma7021188 Search in Google Scholar

[5] T.H.Ludwig, P.L.Schaffer, L.Arnberg: Metall. Mater. Trans.A 44 (2013) 5796. 10.1007/s11661-013-1945-y Search in Google Scholar

[6] F.R.Hemandez, J.Sokolowski: Adv. Eng. Mater.7 (2010) 1037. 10.1002/adem.200500137 Search in Google Scholar

[7] T.H.Ludwig, E. SchonhovdDaehlen, P.L.Schaffer, L.Arnberg: J. Alloy. Compd.586 (2014) 180. 10.1016/j.jallcom.2013.09.127 Search in Google Scholar

[8] S.J.Hong, T.S.Jeong, H.J.Ko, T.H.Lee: Curr. Nanosci.10 (2014) 146. 10.2174/1573413709666131109004559 Search in Google Scholar

[9] C.L.Xu, H.Y.Wang, Y.F.Yang, Q.C.Jiang: Mater. Sci. Eng.A 452 (2007) 341. 10.1016/j.msea.2006.10.114 Search in Google Scholar

[10] Y.J.Sun, Q.L.Wang, H.R.Geng: J. Mater. Sci.47 (2012) 2104. 10.1007/s10853-011-6010-x Search in Google Scholar

[11] J.Sun, X.B.Zhang, Y.J.Zhang, N.H.Ma, H.W.Wang: J. Mater. Sci.50 (2015) 1237. 10.1007/s10853-014-8680-7 Search in Google Scholar

[12] E.S.Lee: Int. J. Adv. Manuf. Tech.16 (2000) 700. 10.1007/s001700070021 Search in Google Scholar

[13] P.Kapranos, D.H.Kirkwood, H.V.Atkinson, P.Kapranos, J.T.Rheinlander, J.J.Bentzen, P.T.Toft, C.P.Debel, G.Laslaz, L.Maenner, S.Blais, J.M.Rodriguez-lbabe, L.Lasa, P.Giordano, G.Chiarmetta, A.Giese: J. Mater. Process. Technol.135 (2003) 271. 10.1016/s0924-0136(02)00857-9 Search in Google Scholar

[14] A.A.Luo, A.K.Sachdev, B.R.Powell: China Foundry7 (2010) 463. 10.3724/SP.J.1077.2011.00225 Search in Google Scholar

[15] V.Vijeesh, P.K.Narayan: Trans. Indian. Inst. Met.67 (2014) 1. 10.1007/s12666-013-0327-x Search in Google Scholar

[16] S.E.Vaziri Yeganeh, A.Razaghian, M.Emamy: Mater. Sci. Eng.A 566 (2013) 1. 10.1016/j.msea.2012.12.078 Search in Google Scholar

[17] G.Zhong, Z.B.Wu, C.Qiu, Y.F.Li: Mater. Sci. Forum.794 (2014) 112. 10.4028/ Search in Google Scholar

[18] M.Zou, X.F.Liu, Q.Q.Sun: J. Mater. Sci.44 (2009) 1952. 10.1007/s10853-009-3287-0 Search in Google Scholar

[19] M.Zou, K.Jiang, X.F.Liu: J. Alloy. Compd.503 (2010) L26. 10.1016/j.jallcom.2010.05.017 Search in Google Scholar

[20] J.Guo, Y.Liu, P.X.Fan, H.X.Qu, T.Quan: J. Alloy. Compd.495 (2010) 45. 10.1016/j.jallcom.2010.02.012 Search in Google Scholar

[21] M.Zuo, D.G.Zhao, T.Y.Teng, H.R.Geng, Z.S.Zhang: Mater. Des.47 (2013) 857. 10.1016/j.matdes.2012.12.054 Search in Google Scholar

[22] D.K.Li, M.Zuo, Q.Zhang, X.F.Liu: J. Alloys Compd.502 (2010) 304. 10.1016/j.jallcom.2010.04.165 Search in Google Scholar

[23] H.Qiao, X.Z.Zhu, T.Gao, Y.Y.Wu, X.F.Liu: J. Mater. Sci. Technol.31 (2015) 391. 10.1016/j.jmst.2014.09.010 Search in Google Scholar

[24] H. QiaoH, T.Gao, X.Z.Zhu, Y.Y.Wu, Z.Qian, X.F.Liu: J. Alloy. Compd.622 (2015) 622. 10.1016/j.jallcom.2014.10.048 Search in Google Scholar

[25] A.V.Pozdniakov, M.V.Glavatskikh, S.V.Makhov, V.I.Napalkov: Mater. Lett.128 (2014) 325. 10.1016/j.matlet.2014.04.068 Search in Google Scholar

[26] G.J.Bao, D.K.Li, J.F.Nie, X.F.Liu: J. Alloy. Compd.528 (2012) 45. 10.1016/j.jallcom.2012.03.025 Search in Google Scholar

[27] T.H.Ludwig, P.L.Schaffer, L. ArnbergL: Metall. Mater. Trans.A 44 (2013) 5796. 10.1007/s11661-013-1945-y Search in Google Scholar

[28] K.Nogita, D. McDonaldStuart, K.Tsujimoto, K.Yasuda, A.Dahle: J. Electron. Microsc.53 (2004) 361. 15585468 10.1093/jmicro/dfh048 Search in Google Scholar

[29] T.Ohmi, K.Matsuura, M.Kudoh, Y.Iton: Light Metals47 (1997) 71. 10.2464/JILM.47.71 Search in Google Scholar

[30] W.Kasprzak, D.Sediako, M.Walker, M.Sahoo, I.Swainson: Metall. Mater. Trans.A 42 (2011) 1854. 10.1007/s11661-011-0666-3 Search in Google Scholar

[31] R.H.Mathiesen, L.Arnberg, Y.Li, V.Meier, P.L.Schaffer, I.Snigireva, A.Snigirev, A.K.Dahle: Metall. Mater. Trans.A 42 (2011) 170. 10.1007/s11661-010-0443-8 Search in Google Scholar

Received: 2018-04-27
Accepted: 2019-05-14
Published Online: 2019-10-23
Published in Print: 2019-11-12

© 2019, Carl Hanser Verlag, München