Accessible Requires Authentication Published by De Gruyter December 4, 2019

Atomistic study of fracture behavior of metallic glass fiber reinforced metal-matrix nanocomposite during bending creep deformation process

Paper presented at the “International Conference on Processing and Characterization of Materials 2018, ICPCM 2018”, 6–8 December 2018, Rourkela, India

K. Vijay Reddy and Snehanshu Pal


In the present work, the effect of reinforcement fiber diameter on elevated temperature bending creep deformation behavior of metal matrix composite is studied. Bending creep tests have been performed on Ni nanocomposite considering different fiber diameters using molecular dynamics simulations. Common neighbor analysis and dislocation analysis have been performed to analyze the deformation behavior and its underlying mechanism at the atomic scale during the bending creep process. Results have revealed that the specimen having thinner fiber exhibits better creep properties and higher plasticity due to the combined influence of shear band interactions and work softening. Whereas, work hardening and twin-detwin mechanisms are responsible for the quasi-cleavage fracture of the specimen having 4 nm diameter fiber.

Correspondence address, Dr. Snehanshu Pal, Department of Metallurgical and Materials Engineering, National Institute of Technology Rourkela, Rourkela, Odisha, 769008, India, Email: , , Tel: +91-661-2462573, Fax: +91-661-2462550


[1] W.Shao, D.Nabb, N.Renevier, I.Sherrington, Y.Fu, J.Luo: J. Electrochem. Soc.159 (2012) D671. 10.1149/2.065211jes Search in Google Scholar

[2] Z.Wang, K.Georgarakis, K.S.Nakayama, Y.Li, A.A.Tsarkov, G.Xie, A.R.Yavari: Sci. Rep.6 (2016) 24384. 27067824 10.1038/srep24384 Search in Google Scholar

[3] R.Zheng, H.Yang, T.Liu, K.Ameyama, C.Ma: Mater. Des.53 (2014) 512. 10.1016/j.matdes.2013.07.048 Search in Google Scholar

[4] M.R.Rezaei, S.H.Razavi, S.G.Shabestari: J. Alloys Compd.673 (2016) 17. 10.1016/j.jallcom.2016.02.234 Search in Google Scholar

[5] S.Khoramkhorshid, M.Alizadeh, A.H.Taghvaei, S.Scudino: Mater. Des.90 (2016) 137. 10.1016/j.matdes.2015.10.063 Search in Google Scholar

[6] F.Bahrami, R.Amini, A.H.Taghvaei: J. Alloys Compd.714 (2017) 530. 10.1016/j.jallcom.2017.04.069 Search in Google Scholar

[7] J.Bai, J.S.Li, J.W.Qiao, J.Wang, R.Feng, H.C.Kou, P.K.Liaw: Sci. Rep.6 (2016) 32287. 27576728 10.1038/srep32287 Search in Google Scholar

[8] Z.Zhang, H.M.Urbassek: Comput. Mater. Sci.145 (2018) 109. 10.1016/j.commatsci.2017.12.063 Search in Google Scholar

[9] C.Kalcher, T.Brink, J.Rohrer, A.Stukowski, K.Albe: Acta Mater.141 (2017) 251. 10.1016/j.actamat.2017.08.058 Search in Google Scholar

[10] Y.Li, T.G.Langdon: Metall. Mater. Trans. A30 (1999) 315. 10.1007/s11661-999-0320-5 Search in Google Scholar

[11] M.Meraj, S.Pal: J. Mol. Model.23 (11) (2017) 309. 29018998 10.1007/s00894-017-3481-y Search in Google Scholar

[12] K.V.Reddy, M.Meraj, S.Pal: Comput. Mater. Sci.136 (2017) 36. 10.1016/j.commatsci.2017.04.028 Search in Google Scholar

[13] S.Nosé: J Chem. Phys.81 (1984) 511. 10.1063/1.447334 Search in Google Scholar

[14] S.Plimpton: J. Comput. Phys.117 (1995) 1. 10.1006/jcph.1995.1039 Search in Google Scholar

[15] S.R.Wilson, M.I.Mendelev: Philos. Mag.95 (2015) 224. 10.1080/14786435.2014.995742 Search in Google Scholar

[16] A.Stukowski: Modell. Simul. Mater. Sci. Eng.18 (2009) 015012. 10.1088/0965-0393/18/1/015012 Search in Google Scholar

[17] J.D.Honeycutt, H.C.Andersen: J. Phys. Chem.91 (1987) 4950. 10.1021/j100303a014 Search in Google Scholar

[18] F.Shimizu, S.Ogata, J.Li: Mater. Trans.48 (2007) 2923. 10.2320/matertrans.MJ200769 Search in Google Scholar

[19] T.Sakthivel, S.P.Selvi, K.Laha: Mater. Sci. Eng. A640 (2015) 61. 10.1016/j.msea.2015.05.068 Search in Google Scholar

[20] L.Kunz, P.Lukáš, M.Svoboda: Mater. Sci. Eng. A424 (2006) 97. 10.1016/j.msea.2006.02.029 Search in Google Scholar

[21] M.W.Kapp, T.Kremmer, C.Motz, B.Yang, R.Pippan: Acta Mater.125 (2017) 351. 10.1016/j.actamat.2016.11.040 Search in Google Scholar

[22] J.R.Brockenbrough, S.Suresh, H.A.Wienecke: Acta Metall. Mater.39 (1991) 735752. 10.1016/0956-7151(91)90274-5 Search in Google Scholar

[23] D.P.Wang, B.A.Sun, X.R.Niu, Y.Yang, W.H.Wang, C.T.Liu: Intermetallics85 (2017) 4853. 10.1016/j.intermet.2017.01.015 Search in Google Scholar

Received: 2019-01-20
Accepted: 2019-05-24
Published Online: 2019-12-04
Published in Print: 2019-12-10

© 2019, Carl Hanser Verlag, München